मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
विस्तार करचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

25x^{2}-70xy+49y^{2}-\left(2x-y\right)\left(2x+y\right)-\left(3x+4y\right)^{2}
बायनोमियल प्रमेयाचो वापर करून \left(a-b\right)^{2}=a^{2}-2ab+b^{2} विस्तारावचें \left(5x-7y\right)^{2}.
25x^{2}-70xy+49y^{2}-\left(\left(2x\right)^{2}-y^{2}\right)-\left(3x+4y\right)^{2}
विचारांत घेयात \left(2x-y\right)\left(2x+y\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
25x^{2}-70xy+49y^{2}-\left(2^{2}x^{2}-y^{2}\right)-\left(3x+4y\right)^{2}
\left(2x\right)^{2} विस्तारीत करचो.
25x^{2}-70xy+49y^{2}-\left(4x^{2}-y^{2}\right)-\left(3x+4y\right)^{2}
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
25x^{2}-70xy+49y^{2}-4x^{2}+y^{2}-\left(3x+4y\right)^{2}
4x^{2}-y^{2} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
21x^{2}-70xy+49y^{2}+y^{2}-\left(3x+4y\right)^{2}
21x^{2} मेळोवंक 25x^{2} आनी -4x^{2} एकठांय करचें.
21x^{2}-70xy+50y^{2}-\left(3x+4y\right)^{2}
50y^{2} मेळोवंक 49y^{2} आनी y^{2} एकठांय करचें.
21x^{2}-70xy+50y^{2}-\left(9x^{2}+24xy+16y^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(3x+4y\right)^{2}.
21x^{2}-70xy+50y^{2}-9x^{2}-24xy-16y^{2}
9x^{2}+24xy+16y^{2} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
12x^{2}-70xy+50y^{2}-24xy-16y^{2}
12x^{2} मेळोवंक 21x^{2} आनी -9x^{2} एकठांय करचें.
12x^{2}-94xy+50y^{2}-16y^{2}
-94xy मेळोवंक -70xy आनी -24xy एकठांय करचें.
12x^{2}-94xy+34y^{2}
34y^{2} मेळोवंक 50y^{2} आनी -16y^{2} एकठांय करचें.
25x^{2}-70xy+49y^{2}-\left(2x-y\right)\left(2x+y\right)-\left(3x+4y\right)^{2}
बायनोमियल प्रमेयाचो वापर करून \left(a-b\right)^{2}=a^{2}-2ab+b^{2} विस्तारावचें \left(5x-7y\right)^{2}.
25x^{2}-70xy+49y^{2}-\left(\left(2x\right)^{2}-y^{2}\right)-\left(3x+4y\right)^{2}
विचारांत घेयात \left(2x-y\right)\left(2x+y\right). नेम वापरून गुणाकार विभिन्न चवकोनांत रुपांतरण करूं येताः \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
25x^{2}-70xy+49y^{2}-\left(2^{2}x^{2}-y^{2}\right)-\left(3x+4y\right)^{2}
\left(2x\right)^{2} विस्तारीत करचो.
25x^{2}-70xy+49y^{2}-\left(4x^{2}-y^{2}\right)-\left(3x+4y\right)^{2}
4 मेळोवंक 2 चो 2 पॉवर मेजचो.
25x^{2}-70xy+49y^{2}-4x^{2}+y^{2}-\left(3x+4y\right)^{2}
4x^{2}-y^{2} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
21x^{2}-70xy+49y^{2}+y^{2}-\left(3x+4y\right)^{2}
21x^{2} मेळोवंक 25x^{2} आनी -4x^{2} एकठांय करचें.
21x^{2}-70xy+50y^{2}-\left(3x+4y\right)^{2}
50y^{2} मेळोवंक 49y^{2} आनी y^{2} एकठांय करचें.
21x^{2}-70xy+50y^{2}-\left(9x^{2}+24xy+16y^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(3x+4y\right)^{2}.
21x^{2}-70xy+50y^{2}-9x^{2}-24xy-16y^{2}
9x^{2}+24xy+16y^{2} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
12x^{2}-70xy+50y^{2}-24xy-16y^{2}
12x^{2} मेळोवंक 21x^{2} आनी -9x^{2} एकठांय करचें.
12x^{2}-94xy+50y^{2}-16y^{2}
-94xy मेळोवंक -70xy आनी -24xy एकठांय करचें.
12x^{2}-94xy+34y^{2}
34y^{2} मेळोवंक 50y^{2} आनी -16y^{2} एकठांय करचें.