मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x-2y=5,3x-y=10
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-2y=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=2y+5
समिकरणाच्या दोनूय कुशींतल्यान 2y ची बेरीज करची.
3\left(2y+5\right)-y=10
3x-y=10 ह्या दुस-या समिकरणांत x खातीर 2y+5 बदलपी घेवचो.
6y+15-y=10
2y+5क 3 फावटी गुणचें.
5y+15=10
-y कडेन 6y ची बेरीज करची.
5y=-5
समिकरणाच्या दोनूय कुशींतल्यान 15 वजा करचें.
y=-1
दोनुय कुशींक 5 न भाग लावचो.
x=2\left(-1\right)+5
x=2y+5 त y खातीर -1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-2+5
-1क 2 फावटी गुणचें.
x=3
-2 कडेन 5 ची बेरीज करची.
x=3,y=-1
प्रणाली आतां सुटावी जाली.
x-2y=5,3x-y=10
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\10\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\times 3\right)}&-\frac{-2}{-1-\left(-2\times 3\right)}\\-\frac{3}{-1-\left(-2\times 3\right)}&\frac{1}{-1-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\-\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 5+\frac{2}{5}\times 10\\-\frac{3}{5}\times 5+\frac{1}{5}\times 10\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
अंकगणीत करचें.
x=3,y=-1
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-2y=5,3x-y=10
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x+3\left(-2\right)y=3\times 5,3x-y=10
x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
3x-6y=15,3x-y=10
सोंपें करचें.
3x-3x-6y+y=15-10
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x-6y=15 तल्यान 3x-y=10 वजा करचो.
-6y+y=15-10
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-5y=15-10
y कडेन -6y ची बेरीज करची.
-5y=5
-10 कडेन 15 ची बेरीज करची.
y=-1
दोनुय कुशींक -5 न भाग लावचो.
3x-\left(-1\right)=10
3x-y=10 त y खातीर -1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x=9
समिकरणाच्या दोनूय कुशींतल्यान 1 वजा करचें.
x=3
दोनुय कुशींक 3 न भाग लावचो.
x=3,y=-1
प्रणाली आतां सुटावी जाली.