मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

5x+y=7,-3x+7y=11
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
5x+y=7
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
5x=-y+7
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
x=\frac{1}{5}\left(-y+7\right)
दोनुय कुशींक 5 न भाग लावचो.
x=-\frac{1}{5}y+\frac{7}{5}
-y+7क \frac{1}{5} फावटी गुणचें.
-3\left(-\frac{1}{5}y+\frac{7}{5}\right)+7y=11
-3x+7y=11 ह्या दुस-या समिकरणांत x खातीर \frac{-y+7}{5} बदलपी घेवचो.
\frac{3}{5}y-\frac{21}{5}+7y=11
\frac{-y+7}{5}क -3 फावटी गुणचें.
\frac{38}{5}y-\frac{21}{5}=11
7y कडेन \frac{3y}{5} ची बेरीज करची.
\frac{38}{5}y=\frac{76}{5}
समिकरणाच्या दोनूय कुशींतल्यान \frac{21}{5} ची बेरीज करची.
y=2
\frac{38}{5} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{1}{5}\times 2+\frac{7}{5}
x=-\frac{1}{5}y+\frac{7}{5} त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-2+7}{5}
2क -\frac{1}{5} फावटी गुणचें.
x=1
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{2}{5} क \frac{7}{5} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=1,y=2
प्रणाली आतां सुटावी जाली.
5x+y=7,-3x+7y=11
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}5&1\\-3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\11\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}5&1\\-3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
\left(\begin{matrix}5&1\\-3&7\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-3\right)}&-\frac{1}{5\times 7-\left(-3\right)}\\-\frac{-3}{5\times 7-\left(-3\right)}&\frac{5}{5\times 7-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}&-\frac{1}{38}\\\frac{3}{38}&\frac{5}{38}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}\times 7-\frac{1}{38}\times 11\\\frac{3}{38}\times 7+\frac{5}{38}\times 11\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
अंकगणीत करचें.
x=1,y=2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
5x+y=7,-3x+7y=11
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-3\times 5x-3y=-3\times 7,5\left(-3\right)x+5\times 7y=5\times 11
5x आनी -3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न गुणचें.
-15x-3y=-21,-15x+35y=55
सोंपें करचें.
-15x+15x-3y-35y=-21-55
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -15x-3y=-21 तल्यान -15x+35y=55 वजा करचो.
-3y-35y=-21-55
15x कडेन -15x ची बेरीज करची. अटी -15x आनी 15x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-38y=-21-55
-35y कडेन -3y ची बेरीज करची.
-38y=-76
-55 कडेन -21 ची बेरीज करची.
y=2
दोनुय कुशींक -38 न भाग लावचो.
-3x+7\times 2=11
-3x+7y=11 त y खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-3x+14=11
2क 7 फावटी गुणचें.
-3x=-3
समिकरणाच्या दोनूय कुशींतल्यान 14 वजा करचें.
x=1
दोनुय कुशींक -3 न भाग लावचो.
x=1,y=2
प्रणाली आतां सुटावी जाली.