x, y खातीर सोडोवचें
x=4
y=-3
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
5x+4y=8,2x-3y=17
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
5x+4y=8
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
5x=-4y+8
समिकरणाच्या दोनूय कुशींतल्यान 4y वजा करचें.
x=\frac{1}{5}\left(-4y+8\right)
दोनुय कुशींक 5 न भाग लावचो.
x=-\frac{4}{5}y+\frac{8}{5}
-4y+8क \frac{1}{5} फावटी गुणचें.
2\left(-\frac{4}{5}y+\frac{8}{5}\right)-3y=17
2x-3y=17 ह्या दुस-या समिकरणांत x खातीर \frac{-4y+8}{5} बदलपी घेवचो.
-\frac{8}{5}y+\frac{16}{5}-3y=17
\frac{-4y+8}{5}क 2 फावटी गुणचें.
-\frac{23}{5}y+\frac{16}{5}=17
-3y कडेन -\frac{8y}{5} ची बेरीज करची.
-\frac{23}{5}y=\frac{69}{5}
समिकरणाच्या दोनूय कुशींतल्यान \frac{16}{5} वजा करचें.
y=-3
-\frac{23}{5} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{4}{5}\left(-3\right)+\frac{8}{5}
x=-\frac{4}{5}y+\frac{8}{5} त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{12+8}{5}
-3क -\frac{4}{5} फावटी गुणचें.
x=4
सामान्य भाजक सोदून आनी गणकांची बेरीज करून \frac{12}{5} क \frac{8}{5} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=4,y=-3
प्रणाली आतां सुटावी जाली.
5x+4y=8,2x-3y=17
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}5&4\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\17\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}5&4\\2&-3\end{matrix}\right))\left(\begin{matrix}5&4\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\2&-3\end{matrix}\right))\left(\begin{matrix}8\\17\end{matrix}\right)
\left(\begin{matrix}5&4\\2&-3\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\2&-3\end{matrix}\right))\left(\begin{matrix}8\\17\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\2&-3\end{matrix}\right))\left(\begin{matrix}8\\17\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-4\times 2}&-\frac{4}{5\left(-3\right)-4\times 2}\\-\frac{2}{5\left(-3\right)-4\times 2}&\frac{5}{5\left(-3\right)-4\times 2}\end{matrix}\right)\left(\begin{matrix}8\\17\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{23}&\frac{4}{23}\\\frac{2}{23}&-\frac{5}{23}\end{matrix}\right)\left(\begin{matrix}8\\17\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{23}\times 8+\frac{4}{23}\times 17\\\frac{2}{23}\times 8-\frac{5}{23}\times 17\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
अंकगणीत करचें.
x=4,y=-3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
5x+4y=8,2x-3y=17
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
2\times 5x+2\times 4y=2\times 8,5\times 2x+5\left(-3\right)y=5\times 17
5x आनी 2x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न गुणचें.
10x+8y=16,10x-15y=85
सोंपें करचें.
10x-10x+8y+15y=16-85
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 10x+8y=16 तल्यान 10x-15y=85 वजा करचो.
8y+15y=16-85
-10x कडेन 10x ची बेरीज करची. अटी 10x आनी -10x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
23y=16-85
15y कडेन 8y ची बेरीज करची.
23y=-69
-85 कडेन 16 ची बेरीज करची.
y=-3
दोनुय कुशींक 23 न भाग लावचो.
2x-3\left(-3\right)=17
2x-3y=17 त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
2x+9=17
-3क -3 फावटी गुणचें.
2x=8
समिकरणाच्या दोनूय कुशींतल्यान 9 वजा करचें.
x=4
दोनुय कुशींक 2 न भाग लावचो.
x=4,y=-3
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}