x, y खातीर सोडोवचें
x = -\frac{939}{11} = -85\frac{4}{11} \approx -85.363636364
y = \frac{3215}{11} = 292\frac{3}{11} \approx 292.272727273
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
5x+3y=450,3x+4y=913
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
5x+3y=450
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
5x=-3y+450
समिकरणाच्या दोनूय कुशींतल्यान 3y वजा करचें.
x=\frac{1}{5}\left(-3y+450\right)
दोनुय कुशींक 5 न भाग लावचो.
x=-\frac{3}{5}y+90
-3y+450क \frac{1}{5} फावटी गुणचें.
3\left(-\frac{3}{5}y+90\right)+4y=913
3x+4y=913 ह्या दुस-या समिकरणांत x खातीर -\frac{3y}{5}+90 बदलपी घेवचो.
-\frac{9}{5}y+270+4y=913
-\frac{3y}{5}+90क 3 फावटी गुणचें.
\frac{11}{5}y+270=913
4y कडेन -\frac{9y}{5} ची बेरीज करची.
\frac{11}{5}y=643
समिकरणाच्या दोनूय कुशींतल्यान 270 वजा करचें.
y=\frac{3215}{11}
\frac{11}{5} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{3}{5}\times \frac{3215}{11}+90
x=-\frac{3}{5}y+90 त y खातीर \frac{3215}{11} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-\frac{1929}{11}+90
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{3215}{11} क -\frac{3}{5} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=-\frac{939}{11}
-\frac{1929}{11} कडेन 90 ची बेरीज करची.
x=-\frac{939}{11},y=\frac{3215}{11}
प्रणाली आतां सुटावी जाली.
5x+3y=450,3x+4y=913
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}5&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}450\\913\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}5&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}450\\913\end{matrix}\right)
\left(\begin{matrix}5&3\\3&4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}450\\913\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}450\\913\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-3\times 3}&-\frac{3}{5\times 4-3\times 3}\\-\frac{3}{5\times 4-3\times 3}&\frac{5}{5\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}450\\913\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&-\frac{3}{11}\\-\frac{3}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}450\\913\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 450-\frac{3}{11}\times 913\\-\frac{3}{11}\times 450+\frac{5}{11}\times 913\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{939}{11}\\\frac{3215}{11}\end{matrix}\right)
अंकगणीत करचें.
x=-\frac{939}{11},y=\frac{3215}{11}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
5x+3y=450,3x+4y=913
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\times 5x+3\times 3y=3\times 450,5\times 3x+5\times 4y=5\times 913
5x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 5 न गुणचें.
15x+9y=1350,15x+20y=4565
सोंपें करचें.
15x-15x+9y-20y=1350-4565
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 15x+9y=1350 तल्यान 15x+20y=4565 वजा करचो.
9y-20y=1350-4565
-15x कडेन 15x ची बेरीज करची. अटी 15x आनी -15x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-11y=1350-4565
-20y कडेन 9y ची बेरीज करची.
-11y=-3215
-4565 कडेन 1350 ची बेरीज करची.
y=\frac{3215}{11}
दोनुय कुशींक -11 न भाग लावचो.
3x+4\times \frac{3215}{11}=913
3x+4y=913 त y खातीर \frac{3215}{11} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x+\frac{12860}{11}=913
\frac{3215}{11}क 4 फावटी गुणचें.
3x=-\frac{2817}{11}
समिकरणाच्या दोनूय कुशींतल्यान \frac{12860}{11} वजा करचें.
x=-\frac{939}{11}
दोनुय कुशींक 3 न भाग लावचो.
x=-\frac{939}{11},y=\frac{3215}{11}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}