मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

4x-7y=23,6x+2y=-3
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
4x-7y=23
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
4x=7y+23
समिकरणाच्या दोनूय कुशींतल्यान 7y ची बेरीज करची.
x=\frac{1}{4}\left(7y+23\right)
दोनुय कुशींक 4 न भाग लावचो.
x=\frac{7}{4}y+\frac{23}{4}
7y+23क \frac{1}{4} फावटी गुणचें.
6\left(\frac{7}{4}y+\frac{23}{4}\right)+2y=-3
6x+2y=-3 ह्या दुस-या समिकरणांत x खातीर \frac{7y+23}{4} बदलपी घेवचो.
\frac{21}{2}y+\frac{69}{2}+2y=-3
\frac{7y+23}{4}क 6 फावटी गुणचें.
\frac{25}{2}y+\frac{69}{2}=-3
2y कडेन \frac{21y}{2} ची बेरीज करची.
\frac{25}{2}y=-\frac{75}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{69}{2} वजा करचें.
y=-3
\frac{25}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{7}{4}\left(-3\right)+\frac{23}{4}
x=\frac{7}{4}y+\frac{23}{4} त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=\frac{-21+23}{4}
-3क \frac{7}{4} फावटी गुणचें.
x=\frac{1}{2}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{21}{4} क \frac{23}{4} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{1}{2},y=-3
प्रणाली आतां सुटावी जाली.
4x-7y=23,6x+2y=-3
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}4&-7\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}23\\-3\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}4&-7\\6&2\end{matrix}\right))\left(\begin{matrix}4&-7\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\6&2\end{matrix}\right))\left(\begin{matrix}23\\-3\end{matrix}\right)
\left(\begin{matrix}4&-7\\6&2\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\6&2\end{matrix}\right))\left(\begin{matrix}23\\-3\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\6&2\end{matrix}\right))\left(\begin{matrix}23\\-3\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-7\times 6\right)}&-\frac{-7}{4\times 2-\left(-7\times 6\right)}\\-\frac{6}{4\times 2-\left(-7\times 6\right)}&\frac{4}{4\times 2-\left(-7\times 6\right)}\end{matrix}\right)\left(\begin{matrix}23\\-3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25}&\frac{7}{50}\\-\frac{3}{25}&\frac{2}{25}\end{matrix}\right)\left(\begin{matrix}23\\-3\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25}\times 23+\frac{7}{50}\left(-3\right)\\-\frac{3}{25}\times 23+\frac{2}{25}\left(-3\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-3\end{matrix}\right)
अंकगणीत करचें.
x=\frac{1}{2},y=-3
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
4x-7y=23,6x+2y=-3
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
6\times 4x+6\left(-7\right)y=6\times 23,4\times 6x+4\times 2y=4\left(-3\right)
4x आनी 6x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 6 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न गुणचें.
24x-42y=138,24x+8y=-12
सोंपें करचें.
24x-24x-42y-8y=138+12
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 24x-42y=138 तल्यान 24x+8y=-12 वजा करचो.
-42y-8y=138+12
-24x कडेन 24x ची बेरीज करची. अटी 24x आनी -24x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-50y=138+12
-8y कडेन -42y ची बेरीज करची.
-50y=150
12 कडेन 138 ची बेरीज करची.
y=-3
दोनुय कुशींक -50 न भाग लावचो.
6x+2\left(-3\right)=-3
6x+2y=-3 त y खातीर -3 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
6x-6=-3
-3क 2 फावटी गुणचें.
6x=3
समिकरणाच्या दोनूय कुशींतल्यान 6 ची बेरीज करची.
x=\frac{1}{2}
दोनुय कुशींक 6 न भाग लावचो.
x=\frac{1}{2},y=-3
प्रणाली आतां सुटावी जाली.