x, y खातीर सोडोवचें
x = \frac{8}{5} = 1\frac{3}{5} = 1.6
y = \frac{11}{10} = 1\frac{1}{10} = 1.1
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
3x+2y=7,4x+6y=13
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
3x+2y=7
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
3x=-2y+7
समिकरणाच्या दोनूय कुशींतल्यान 2y वजा करचें.
x=\frac{1}{3}\left(-2y+7\right)
दोनुय कुशींक 3 न भाग लावचो.
x=-\frac{2}{3}y+\frac{7}{3}
-2y+7क \frac{1}{3} फावटी गुणचें.
4\left(-\frac{2}{3}y+\frac{7}{3}\right)+6y=13
4x+6y=13 ह्या दुस-या समिकरणांत x खातीर \frac{-2y+7}{3} बदलपी घेवचो.
-\frac{8}{3}y+\frac{28}{3}+6y=13
\frac{-2y+7}{3}क 4 फावटी गुणचें.
\frac{10}{3}y+\frac{28}{3}=13
6y कडेन -\frac{8y}{3} ची बेरीज करची.
\frac{10}{3}y=\frac{11}{3}
समिकरणाच्या दोनूय कुशींतल्यान \frac{28}{3} वजा करचें.
y=\frac{11}{10}
\frac{10}{3} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=-\frac{2}{3}\times \frac{11}{10}+\frac{7}{3}
x=-\frac{2}{3}y+\frac{7}{3} त y खातीर \frac{11}{10} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-\frac{11}{15}+\frac{7}{3}
गणक वेळा गणकाक आनी भाजक वेळा भाजकाक गुणून \frac{11}{10} क -\frac{2}{3} फावटी गुणचें. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{8}{5}
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{11}{15} क \frac{7}{3} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=\frac{8}{5},y=\frac{11}{10}
प्रणाली आतां सुटावी जाली.
3x+2y=7,4x+6y=13
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}3&2\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\13\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}3&2\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}7\\13\end{matrix}\right)
\left(\begin{matrix}3&2\\4&6\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}7\\13\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&6\end{matrix}\right))\left(\begin{matrix}7\\13\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{3\times 6-2\times 4}&-\frac{2}{3\times 6-2\times 4}\\-\frac{4}{3\times 6-2\times 4}&\frac{3}{3\times 6-2\times 4}\end{matrix}\right)\left(\begin{matrix}7\\13\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{1}{5}\\-\frac{2}{5}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}7\\13\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 7-\frac{1}{5}\times 13\\-\frac{2}{5}\times 7+\frac{3}{10}\times 13\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\\\frac{11}{10}\end{matrix}\right)
अंकगणीत करचें.
x=\frac{8}{5},y=\frac{11}{10}
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
3x+2y=7,4x+6y=13
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
4\times 3x+4\times 2y=4\times 7,3\times 4x+3\times 6y=3\times 13
3x आनी 4x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 4 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न गुणचें.
12x+8y=28,12x+18y=39
सोंपें करचें.
12x-12x+8y-18y=28-39
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 12x+8y=28 तल्यान 12x+18y=39 वजा करचो.
8y-18y=28-39
-12x कडेन 12x ची बेरीज करची. अटी 12x आनी -12x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-10y=28-39
-18y कडेन 8y ची बेरीज करची.
-10y=-11
-39 कडेन 28 ची बेरीज करची.
y=\frac{11}{10}
दोनुय कुशींक -10 न भाग लावचो.
4x+6\times \frac{11}{10}=13
4x+6y=13 त y खातीर \frac{11}{10} बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
4x+\frac{33}{5}=13
\frac{11}{10}क 6 फावटी गुणचें.
4x=\frac{32}{5}
समिकरणाच्या दोनूय कुशींतल्यान \frac{33}{5} वजा करचें.
x=\frac{8}{5}
दोनुय कुशींक 4 न भाग लावचो.
x=\frac{8}{5},y=\frac{11}{10}
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}