मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

2x+y=3,3x+4y=7
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x+y=3
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=-y+3
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
x=\frac{1}{2}\left(-y+3\right)
दोनुय कुशींक 2 न भाग लावचो.
x=-\frac{1}{2}y+\frac{3}{2}
-y+3क \frac{1}{2} फावटी गुणचें.
3\left(-\frac{1}{2}y+\frac{3}{2}\right)+4y=7
3x+4y=7 ह्या दुस-या समिकरणांत x खातीर \frac{-y+3}{2} बदलपी घेवचो.
-\frac{3}{2}y+\frac{9}{2}+4y=7
\frac{-y+3}{2}क 3 फावटी गुणचें.
\frac{5}{2}y+\frac{9}{2}=7
4y कडेन -\frac{3y}{2} ची बेरीज करची.
\frac{5}{2}y=\frac{5}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{9}{2} वजा करचें.
y=1
\frac{5}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{-1+3}{2}
x=-\frac{1}{2}y+\frac{3}{2} त y खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=1
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{1}{2} क \frac{3}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=1,y=1
प्रणाली आतां सुटावी जाली.
2x+y=3,3x+4y=7
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\7\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&1\\3&4\end{matrix}\right))\left(\begin{matrix}2&1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
\left(\begin{matrix}2&1\\3&4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3}&-\frac{1}{2\times 4-3}\\-\frac{3}{2\times 4-3}&\frac{2}{2\times 4-3}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&-\frac{1}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\times 3-\frac{1}{5}\times 7\\-\frac{3}{5}\times 3+\frac{2}{5}\times 7\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
अंकगणीत करचें.
x=1,y=1
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x+y=3,3x+4y=7
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\times 2x+3y=3\times 3,2\times 3x+2\times 4y=2\times 7
2x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
6x+3y=9,6x+8y=14
सोंपें करचें.
6x-6x+3y-8y=9-14
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 6x+3y=9 तल्यान 6x+8y=14 वजा करचो.
3y-8y=9-14
-6x कडेन 6x ची बेरीज करची. अटी 6x आनी -6x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-5y=9-14
-8y कडेन 3y ची बेरीज करची.
-5y=-5
-14 कडेन 9 ची बेरीज करची.
y=1
दोनुय कुशींक -5 न भाग लावचो.
3x+4=7
3x+4y=7 त y खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x=3
समिकरणाच्या दोनूय कुशींतल्यान 4 वजा करचें.
x=1
दोनुय कुशींक 3 न भाग लावचो.
x=1,y=1
प्रणाली आतां सुटावी जाली.