x, y खातीर सोडोवचें
x=8
y=5
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
-5x+8y=0,-7x-8y=-96
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
-5x+8y=0
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
-5x=-8y
समिकरणाच्या दोनूय कुशींतल्यान 8y वजा करचें.
x=-\frac{1}{5}\left(-8\right)y
दोनुय कुशींक -5 न भाग लावचो.
x=\frac{8}{5}y
-8yक -\frac{1}{5} फावटी गुणचें.
-7\times \frac{8}{5}y-8y=-96
-7x-8y=-96 ह्या दुस-या समिकरणांत x खातीर \frac{8y}{5} बदलपी घेवचो.
-\frac{56}{5}y-8y=-96
\frac{8y}{5}क -7 फावटी गुणचें.
-\frac{96}{5}y=-96
-8y कडेन -\frac{56y}{5} ची बेरीज करची.
y=5
-\frac{96}{5} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{8}{5}\times 5
x=\frac{8}{5}y त y खातीर 5 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=8
5क \frac{8}{5} फावटी गुणचें.
x=8,y=5
प्रणाली आतां सुटावी जाली.
-5x+8y=0,-7x-8y=-96
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-96\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&8\\-7&-8\end{matrix}\right))\left(\begin{matrix}0\\-96\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-5\left(-8\right)-8\left(-7\right)}&-\frac{8}{-5\left(-8\right)-8\left(-7\right)}\\-\frac{-7}{-5\left(-8\right)-8\left(-7\right)}&-\frac{5}{-5\left(-8\right)-8\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}0\\-96\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&-\frac{1}{12}\\\frac{7}{96}&-\frac{5}{96}\end{matrix}\right)\left(\begin{matrix}0\\-96\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\left(-96\right)\\-\frac{5}{96}\left(-96\right)\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
अंकगणीत करचें.
x=8,y=5
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
-5x+8y=0,-7x-8y=-96
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-7\left(-5\right)x-7\times 8y=0,-5\left(-7\right)x-5\left(-8\right)y=-5\left(-96\right)
-5x आनी -7x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -7 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -5 न गुणचें.
35x-56y=0,35x+40y=480
सोंपें करचें.
35x-35x-56y-40y=-480
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 35x-56y=0 तल्यान 35x+40y=480 वजा करचो.
-56y-40y=-480
-35x कडेन 35x ची बेरीज करची. अटी 35x आनी -35x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-96y=-480
-40y कडेन -56y ची बेरीज करची.
y=5
दोनुय कुशींक -96 न भाग लावचो.
-7x-8\times 5=-96
-7x-8y=-96 त y खातीर 5 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-7x-40=-96
5क -8 फावटी गुणचें.
-7x=-56
समिकरणाच्या दोनूय कुशींतल्यान 40 ची बेरीज करची.
x=8
दोनुय कुशींक -7 न भाग लावचो.
x=8,y=5
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}