मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

-\sqrt{2}y+x=0
पयलें समिकरण विचारांत घेवचें. संज्ञा परत क्रमान लावची.
\left(-\sqrt{2}\right)y+x=0,3y+\sqrt{2}x=5\sqrt{2}
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
\left(-\sqrt{2}\right)y+x=0
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक y वेगळावन y खातीर तें सोडोवचें.
\left(-\sqrt{2}\right)y=-x
समिकरणाच्या दोनूय कुशींतल्यान x वजा करचें.
y=\left(-\frac{\sqrt{2}}{2}\right)\left(-1\right)x
दोनुय कुशींक -\sqrt{2} न भाग लावचो.
y=\frac{\sqrt{2}}{2}x
-xक -\frac{\sqrt{2}}{2} फावटी गुणचें.
3\times \frac{\sqrt{2}}{2}x+\sqrt{2}x=5\sqrt{2}
3y+\sqrt{2}x=5\sqrt{2} ह्या दुस-या समिकरणांत y खातीर \frac{x\sqrt{2}}{2} बदलपी घेवचो.
\frac{3\sqrt{2}}{2}x+\sqrt{2}x=5\sqrt{2}
\frac{x\sqrt{2}}{2}क 3 फावटी गुणचें.
\frac{5\sqrt{2}}{2}x=5\sqrt{2}
\sqrt{2}x कडेन \frac{3\sqrt{2}x}{2} ची बेरीज करची.
x=2
दोनुय कुशींक \frac{5\sqrt{2}}{2} न भाग लावचो.
y=\frac{\sqrt{2}}{2}\times 2
y=\frac{\sqrt{2}}{2}x त x खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
y=\sqrt{2}
2क \frac{\sqrt{2}}{2} फावटी गुणचें.
y=\sqrt{2},x=2
प्रणाली आतां सुटावी जाली.
-\sqrt{2}y+x=0
पयलें समिकरण विचारांत घेवचें. संज्ञा परत क्रमान लावची.
\left(-\sqrt{2}\right)y+x=0,3y+\sqrt{2}x=5\sqrt{2}
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3\left(-\sqrt{2}\right)y+3x=0,\left(-\sqrt{2}\right)\times 3y+\left(-\sqrt{2}\right)\sqrt{2}x=\left(-\sqrt{2}\right)\times 5\sqrt{2}
-\sqrt{2}y आनी 3y बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -\sqrt{2} न गुणचें.
\left(-3\sqrt{2}\right)y+3x=0,\left(-3\sqrt{2}\right)y-2x=-10
सोंपें करचें.
\left(-3\sqrt{2}\right)y+3\sqrt{2}y+3x+2x=10
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून \left(-3\sqrt{2}\right)y+3x=0 तल्यान \left(-3\sqrt{2}\right)y-2x=-10 वजा करचो.
3x+2x=10
3\sqrt{2}y कडेन -3\sqrt{2}y ची बेरीज करची. अटी -3\sqrt{2}y आनी 3\sqrt{2}y रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
5x=10
2x कडेन 3x ची बेरीज करची.
x=2
दोनुय कुशींक 5 न भाग लावचो.
3y+\sqrt{2}\times 2=5\sqrt{2}
3y+\sqrt{2}x=5\sqrt{2} त x खातीर 2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी y खातीर थेट सोडोवंक शकतात.
3y+2\sqrt{2}=5\sqrt{2}
2क \sqrt{2} फावटी गुणचें.
3y=3\sqrt{2}
समिकरणाच्या दोनूय कुशींतल्यान 2\sqrt{2} वजा करचें.
y=\sqrt{2}
दोनुय कुशींक 3 न भाग लावचो.
y=\sqrt{2},x=2
प्रणाली आतां सुटावी जाली.