मुखेल आशय वगडाय
x, y, z खातीर सोडोवचें
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

x=-y+3z-t+2c
x खातीर x+y-3z+t=2c सोडोवचो.
3\left(-y+3z-t+2c\right)-y+z-t=2a -\left(-y+3z-t+2c\right)+3y-z+t=2b
दुस-या आनी तिस-या समिकरणांत x खातीर -y+3z-t+2c बदलपी घेवचो.
y=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c z=y-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t
अनुक्रमान y आनी z खातीर हीं समिकरणां सोडोवचीं.
z=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t
z=y-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t ह्या समिकरणांत y खातीर -t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c बदलपी घेवचो.
z=\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
z खातीर z=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t सोडोवचो.
y=-t+\frac{5}{2}\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{1}{2}a+\frac{3}{2}c
y=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c ह्या समिकरणांत z खातीर \frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b बदलपी घेवचो.
y=-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b
y=-t+\frac{5}{2}\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{1}{2}a+\frac{3}{2}c तल्यान y मेजचो.
x=-\left(-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-t+2c
y आनी \frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b ह्या समिकरणांत z खातीर -\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b बदलपी घेवचो x=-y+3z-t+2c.
x=\frac{1}{6}t+\frac{1}{6}c+\frac{2}{3}a+\frac{1}{6}b
x=-\left(-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-t+2c तल्यान x मेजचो.
x=\frac{1}{6}t+\frac{1}{6}c+\frac{2}{3}a+\frac{1}{6}b y=-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b z=\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
प्रणाली आतां सुटावी जाली.