मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x+y=6,3x+2y=13
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x+y=6
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=-y+6
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
3\left(-y+6\right)+2y=13
3x+2y=13 ह्या दुस-या समिकरणांत x खातीर -y+6 बदलपी घेवचो.
-3y+18+2y=13
-y+6क 3 फावटी गुणचें.
-y+18=13
2y कडेन -3y ची बेरीज करची.
-y=-5
समिकरणाच्या दोनूय कुशींतल्यान 18 वजा करचें.
y=5
दोनुय कुशींक -1 न भाग लावचो.
x=-5+6
x=-y+6 त y खातीर 5 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=1
-5 कडेन 6 ची बेरीज करची.
x=1,y=5
प्रणाली आतां सुटावी जाली.
x+y=6,3x+2y=13
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\13\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}1&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
\left(\begin{matrix}1&1\\3&2\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-3}&-\frac{1}{2-3}\\-\frac{3}{2-3}&\frac{1}{2-3}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 6+13\\3\times 6-13\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
अंकगणीत करचें.
x=1,y=5
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x+y=6,3x+2y=13
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x+3y=3\times 6,3x+2y=13
x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
3x+3y=18,3x+2y=13
सोंपें करचें.
3x-3x+3y-2y=18-13
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x+3y=18 तल्यान 3x+2y=13 वजा करचो.
3y-2y=18-13
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
y=18-13
-2y कडेन 3y ची बेरीज करची.
y=5
-13 कडेन 18 ची बेरीज करची.
3x+2\times 5=13
3x+2y=13 त y खातीर 5 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x+10=13
5क 2 फावटी गुणचें.
3x=3
समिकरणाच्या दोनूय कुशींतल्यान 10 वजा करचें.
x=1
दोनुय कुशींक 3 न भाग लावचो.
x=1,y=5
प्रणाली आतां सुटावी जाली.