\left\{ \begin{array} { l } { 2 x + y = 5 } \\ { - x + 5 y = 3 } \end{array} \right.
x, y खातीर सोडोवचें
x=2
y=1
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
2x+y=5,-x+5y=3
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
2x+y=5
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
2x=-y+5
समिकरणाच्या दोनूय कुशींतल्यान y वजा करचें.
x=\frac{1}{2}\left(-y+5\right)
दोनुय कुशींक 2 न भाग लावचो.
x=-\frac{1}{2}y+\frac{5}{2}
-y+5क \frac{1}{2} फावटी गुणचें.
-\left(-\frac{1}{2}y+\frac{5}{2}\right)+5y=3
-x+5y=3 ह्या दुस-या समिकरणांत x खातीर \frac{-y+5}{2} बदलपी घेवचो.
\frac{1}{2}y-\frac{5}{2}+5y=3
\frac{-y+5}{2}क -1 फावटी गुणचें.
\frac{11}{2}y-\frac{5}{2}=3
5y कडेन \frac{y}{2} ची बेरीज करची.
\frac{11}{2}y=\frac{11}{2}
समिकरणाच्या दोनूय कुशींतल्यान \frac{5}{2} ची बेरीज करची.
y=1
\frac{11}{2} वरवीं समिकरणाच्या दोनूय कुशींक भाग लावचो, अपुर्णांकाच्या पुरका वरवीं दोनूय कुशींक गुणपा सारकेंच हें आसता.
x=\frac{-1+5}{2}
x=-\frac{1}{2}y+\frac{5}{2} त y खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=2
सामान्य भाजक सोदून आनी गणकांची बेरीज करून -\frac{1}{2} क \frac{5}{2} ची बेरीज करची. मागीर शक्य आसा जाल्यार सगल्यांत ल्हान संज्ञेन अपुर्णांक उणो करचो.
x=2,y=1
प्रणाली आतां सुटावी जाली.
2x+y=5,-x+5y=3
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
\left(\begin{matrix}2&1\\-1&5\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-1&5\end{matrix}\right))\left(\begin{matrix}5\\3\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-\left(-1\right)}&-\frac{1}{2\times 5-\left(-1\right)}\\-\frac{-1}{2\times 5-\left(-1\right)}&\frac{2}{2\times 5-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&-\frac{1}{11}\\\frac{1}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}5\\3\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\times 5-\frac{1}{11}\times 3\\\frac{1}{11}\times 5+\frac{2}{11}\times 3\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
अंकगणीत करचें.
x=2,y=1
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
2x+y=5,-x+5y=3
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
-2x-y=-5,2\left(-1\right)x+2\times 5y=2\times 3
2x आनी -x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक -1 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 2 न गुणचें.
-2x-y=-5,-2x+10y=6
सोंपें करचें.
-2x+2x-y-10y=-5-6
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून -2x-y=-5 तल्यान -2x+10y=6 वजा करचो.
-y-10y=-5-6
2x कडेन -2x ची बेरीज करची. अटी -2x आनी 2x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-11y=-5-6
-10y कडेन -y ची बेरीज करची.
-11y=-11
-6 कडेन -5 ची बेरीज करची.
y=1
दोनुय कुशींक -11 न भाग लावचो.
-x+5=3
-x+5y=3 त y खातीर 1 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
-x=-2
समिकरणाच्या दोनूय कुशींतल्यान 5 वजा करचें.
x=2
दोनुय कुशींक -1 न भाग लावचो.
x=2,y=1
प्रणाली आतां सुटावी जाली.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}