मुखेल आशय वगडाय
x, y खातीर सोडोवचें
Tick mark Image
ग्राफ

वॅब सोदांतल्यान समान समस्या

वांटचें

x-2y=9,3x+4y=7
वजाचो वापर करून समिकरणाची जोडी सोडोवंक, पयलीं एका विशमा खातीर एक समिकरण सोडोवचें. मागीर दुसऱ्या समिकरणांत त्या विशमाचे सुवातेर येवपी निकाल घेवचो.
x-2y=9
एक समिकरण वेंचचें आनी बरोबर चिन्नाच्या दावे कुशीक x वेगळावन x खातीर तें सोडोवचें.
x=2y+9
समिकरणाच्या दोनूय कुशींतल्यान 2y ची बेरीज करची.
3\left(2y+9\right)+4y=7
3x+4y=7 ह्या दुस-या समिकरणांत x खातीर 2y+9 बदलपी घेवचो.
6y+27+4y=7
2y+9क 3 फावटी गुणचें.
10y+27=7
4y कडेन 6y ची बेरीज करची.
10y=-20
समिकरणाच्या दोनूय कुशींतल्यान 27 वजा करचें.
y=-2
दोनुय कुशींक 10 न भाग लावचो.
x=2\left(-2\right)+9
x=2y+9 त y खातीर -2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
x=-4+9
-2क 2 फावटी गुणचें.
x=5
-4 कडेन 9 ची बेरीज करची.
x=5,y=-2
प्रणाली आतां सुटावी जाली.
x-2y=9,3x+4y=7
समिकरणां प्रमाणित पद्दतीन मांडची आनी मागीर समिकरणाची प्रणाली सोडोवंक मॅट्रिसीसचो वापर करचो.
\left(\begin{matrix}1&-2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
मॅट्रिक्स पद्दतीन समिकरण बरोवचें.
inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}1&-2\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
\left(\begin{matrix}1&-2\\3&4\end{matrix}\right)च्या विपरीत मॅट्रीक्स वरवीं समिकरण गुणाकार सोडचो.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
मॅट्रीक्साचो गुणाकार आनी समान मॅट्रीक्साच्या विपरीत आसा.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
बरोबर चिन्नाच्या दाव्या बाजून मॅट्रायसीस गुणाकार करचो.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\times 3\right)}&-\frac{-2}{4-\left(-2\times 3\right)}\\-\frac{3}{4-\left(-2\times 3\right)}&\frac{1}{4-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
2\times 2 मॅट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right)खातीर, उरफाटें मॅट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)आसा, ताका लागून मॅट्रिक्स समिकरण मॅट्रिक्स गुणाकार समस्या म्हूण बरोवंक शकतात.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\-\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
अंकगणीत करचें.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 9+\frac{1}{5}\times 7\\-\frac{3}{10}\times 9+\frac{1}{10}\times 7\end{matrix}\right)
मॅट्रिसीस गुणचे.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
अंकगणीत करचें.
x=5,y=-2
मॅट्रिक्स मुलतत्वां x आनी y काडचीं.
x-2y=9,3x+4y=7
कडसरावन सोडोवंक, दोनूय समिकरणांनी एक तरी विशमाचे को-ऐफिशियंट समान आसूंक जाय म्हणटकीर एका समिकरणांतल्यान दुसरें वजा करतकीच विशम रद्द जातलें.
3x+3\left(-2\right)y=3\times 9,3x+4y=7
x आनी 3x बरोबर करूंक, पयल्या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 3 न आनी दुस-या समिकरणाच्या दरेक कुशीच्या सगल्या संज्ञांक 1 न गुणचें.
3x-6y=27,3x+4y=7
सोंपें करचें.
3x-3x-6y-4y=27-7
बरोबर चिन्नाच्या दरेक कुशीच्यो समान संज्ञा वजा करून 3x-6y=27 तल्यान 3x+4y=7 वजा करचो.
-6y-4y=27-7
-3x कडेन 3x ची बेरीज करची. अटी 3x आनी -3x रद्द जाता, सोडोवंक शकता फकत तें एक विशम समिकरणा वांगडा उरता.
-10y=27-7
-4y कडेन -6y ची बेरीज करची.
-10y=20
-7 कडेन 27 ची बेरीज करची.
y=-2
दोनुय कुशींक -10 न भाग लावचो.
3x+4\left(-2\right)=7
3x+4y=7 त y खातीर -2 बदली घेवचो. कारण निकालांत येवपी समिकरणांत फकत एकूच विशम आसा, तुमी x खातीर थेट सोडोवंक शकतात.
3x-8=7
-2क 4 फावटी गुणचें.
3x=15
समिकरणाच्या दोनूय कुशींतल्यान 8 ची बेरीज करची.
x=5
दोनुय कुशींक 3 न भाग लावचो.
x=5,y=-2
प्रणाली आतां सुटावी जाली.