मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
w.r.t. x चो फरक काडचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\int 1.2x^{2}+32x+186\mathrm{d}x
गुणाकार करचे.
\int \frac{6x^{2}}{5}\mathrm{d}x+\int 32x\mathrm{d}x+\int 186\mathrm{d}x
संज्ञे वरवीं संज्ञा बेरीज इंटिग्रेट करची.
\frac{6\int x^{2}\mathrm{d}x}{5}+32\int x\mathrm{d}x+\int 186\mathrm{d}x
संज्ञेच्या दरेकांत कॉन्स्टंट फॅक्टर आवट करचो.
\frac{2x^{3}}{5}+32\int x\mathrm{d}x+\int 186\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{3}}{3} वांगडा \int x^{2}\mathrm{d}x बदलचे. \frac{x^{3}}{3}क 1.2 फावटी गुणचें.
\frac{2x^{3}}{5}+16x^{2}+\int 186\mathrm{d}x
k\neq -1 खातीर \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} आशिल्ल्यान, \frac{x^{2}}{2} वांगडा \int x\mathrm{d}x बदलचे. \frac{x^{2}}{2}क 32 फावटी गुणचें.
\frac{2x^{3}}{5}+16x^{2}+186x
सामान्य इंटिग्रल्स नेम \int a\mathrm{d}x=ax वापरून 186 चो इंटिग्रल सोदचो.
\frac{2x^{3}}{5}+16x^{2}+186x+С
जर F\left(x\right) हो f\left(x\right) चो एण्टीडेरिवेटीव आसल्यार, मागीर f\left(x\right) च्या सगळ्या एण्टीडेरिवेटीवांचो संच F\left(x\right)+C प्रमाणें दितात. ताकालागून निकालाक C\in \mathrm{R} इंटीग्रेशनाचो कॉन्स्टंट जमा करचो.