मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
विस्तार करचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} विस्तारावचें \left(a-2b\right)^{3}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{2}=p^{2}-2pq+q^{2} विस्तारावचें \left(a-2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p+q\right)^{2}=p^{2}+2pq+q^{2} विस्तारावचें \left(a+2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
वितरक गूणधर्माचो वापर करून a^{2}-4a+4 क a^{2}+4a+4 न गुणचें आनी संज्ञां भशेन एकठावणी करची.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-4a^{2} मेळोवंक -8a^{2} आनी 4a^{2} एकठांय करचें.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{2}=p^{2}-2pq+q^{2} विस्तारावचें \left(2-a^{2}\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4-4a^{2}+a^{4} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
12 मेळोवंक 16 आनी 4 वजा करचे.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
0 मेळोवंक -4a^{2} आनी 4a^{2} एकठांय करचें.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
0 मेळोवंक a^{4} आनी -a^{4} एकठांय करचें.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{3} मेळोवंक \frac{1}{36} आनी 12 गुणचें.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
a^{3}-6a^{2}b+12ab^{2}-8b^{3} न \frac{1}{3} गुणपाक विभाजक विशमाचो वापर करचो.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{11}{3}b-a न ab गुणपाक विभाजक विशमाचो वापर करचो.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{11}{3}ab^{2}-ba^{2} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{3}ab^{2} मेळोवंक 4ab^{2} आनी -\frac{11}{3}ab^{2} एकठांय करचें.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-a^{2}b मेळोवंक -2a^{2}b आनी ba^{2} एकठांय करचें.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
b^{2}+a^{2} न \frac{1}{3}a-b गुणपाक विभाजक विशमाचो वापर करचो.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
0 मेळोवंक \frac{1}{3}ab^{2} आनी -\frac{1}{3}ab^{2} एकठांय करचें.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
0 मेळोवंक \frac{1}{3}a^{3} आनी -\frac{1}{3}a^{3} एकठांय करचें.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
-\frac{5}{3}b^{3} मेळोवंक -\frac{8}{3}b^{3} आनी b^{3} एकठांय करचें.
-\frac{5}{3}b^{3}
0 मेळोवंक -a^{2}b आनी ba^{2} एकठांय करचें.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a-2\right)^{2}\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} विस्तारावचें \left(a-2b\right)^{3}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a+2\right)^{2}+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{2}=p^{2}-2pq+q^{2} विस्तारावचें \left(a-2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(\left(a^{2}-4a+4\right)\left(a^{2}+4a+4\right)+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p+q\right)^{2}=p^{2}+2pq+q^{2} विस्तारावचें \left(a+2\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-8a^{2}+16+4a^{2}-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
वितरक गूणधर्माचो वापर करून a^{2}-4a+4 क a^{2}+4a+4 न गुणचें आनी संज्ञां भशेन एकठावणी करची.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(2-a^{2}\right)^{2}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-4a^{2} मेळोवंक -8a^{2} आनी 4a^{2} एकठांय करचें.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+\left(a^{2}\right)^{2}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
बायनोमियल प्रमेयाचो वापर करून \left(p-q\right)^{2}=p^{2}-2pq+q^{2} विस्तारावचें \left(2-a^{2}\right)^{2}.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-\left(4-4a^{2}+a^{4}\right)\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+16-4+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
4-4a^{2}+a^{4} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}-4a^{2}+12+4a^{2}-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
12 मेळोवंक 16 आनी 4 वजा करचे.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\left(a^{4}+12-a^{4}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
0 मेळोवंक -4a^{2} आनी 4a^{2} एकठांय करचें.
\frac{1}{36}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)\times 12-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
0 मेळोवंक a^{4} आनी -a^{4} एकठांय करचें.
\frac{1}{3}\left(a^{3}-6a^{2}b+12ab^{2}-8b^{3}\right)-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{3} मेळोवंक \frac{1}{36} आनी 12 गुणचें.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-ab\left(\frac{11}{3}b-a\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
a^{3}-6a^{2}b+12ab^{2}-8b^{3} न \frac{1}{3} गुणपाक विभाजक विशमाचो वापर करचो.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\left(\frac{11}{3}ab^{2}-ba^{2}\right)-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{11}{3}b-a न ab गुणपाक विभाजक विशमाचो वापर करचो.
\frac{1}{3}a^{3}-2a^{2}b+4ab^{2}-\frac{8}{3}b^{3}-\frac{11}{3}ab^{2}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{11}{3}ab^{2}-ba^{2} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{1}{3}a^{3}-2a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}+ba^{2}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
\frac{1}{3}ab^{2} मेळोवंक 4ab^{2} आनी -\frac{11}{3}ab^{2} एकठांय करचें.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}a-b\right)\left(b^{2}+a^{2}\right)
-a^{2}b मेळोवंक -2a^{2}b आनी ba^{2} एकठांय करचें.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\left(\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2}\right)
b^{2}+a^{2} न \frac{1}{3}a-b गुणपाक विभाजक विशमाचो वापर करचो.
\frac{1}{3}a^{3}-a^{2}b+\frac{1}{3}ab^{2}-\frac{8}{3}b^{3}-\frac{1}{3}ab^{2}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
\frac{1}{3}ab^{2}+\frac{1}{3}a^{3}-b^{3}-ba^{2} चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{1}{3}a^{3}-a^{2}b-\frac{8}{3}b^{3}-\frac{1}{3}a^{3}+b^{3}+ba^{2}
0 मेळोवंक \frac{1}{3}ab^{2} आनी -\frac{1}{3}ab^{2} एकठांय करचें.
-a^{2}b-\frac{8}{3}b^{3}+b^{3}+ba^{2}
0 मेळोवंक \frac{1}{3}a^{3} आनी -\frac{1}{3}a^{3} एकठांय करचें.
-a^{2}b-\frac{5}{3}b^{3}+ba^{2}
-\frac{5}{3}b^{3} मेळोवंक -\frac{8}{3}b^{3} आनी b^{3} एकठांय करचें.
-\frac{5}{3}b^{3}
0 मेळोवंक -a^{2}b आनी ba^{2} एकठांय करचें.