मूल्यांकन करचें
\frac{x\left(3x+5\right)}{2}
विस्तार करचो
\frac{3x^{2}+5x}{2}
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
3-x न \frac{1}{2}x गुणपाक विभाजक विशमाचो वापर करचो.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x+1 न 3 गुणपाक विभाजक विशमाचो वापर करचो.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
वितरक गूणधर्माचो वापर करून 3x+3 क x-1 न गुणचें आनी संज्ञां भशेन एकठावणी करची.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{5}{2}x^{2} मेळोवंक -\frac{1}{2}x^{2} आनी 3x^{2} एकठांय करचें.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
बायनोमियल प्रमेयाचो वापर करून \left(a-b\right)^{2}=a^{2}-2ab+b^{2} विस्तारावचें \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x^{2}-2x+1 न x गुणपाक विभाजक विशमाचो वापर करचो.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x^{3}-2x^{2}+x चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{9}{2}x^{2} मेळोवंक \frac{5}{2}x^{2} आनी 2x^{2} एकठांय करचें.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{1}{2}x मेळोवंक \frac{3}{2}x आनी -x एकठांय करचें.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
बायनोमियल प्रमेयाचो वापर करून \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} विस्तारावचें \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
0 मेळोवंक -x^{3} आनी x^{3} एकठांय करचें.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
\frac{3}{2}x^{2} मेळोवंक \frac{9}{2}x^{2} आनी -3x^{2} एकठांय करचें.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
\frac{7}{2}x मेळोवंक \frac{1}{2}x आनी 3x एकठांय करचें.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
-4 मेळोवंक -3 आनी 1 वजा करचे.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
2x-8 न -\frac{1}{2} गुणपाक विभाजक विशमाचो वापर करचो.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
\frac{5}{2}x मेळोवंक \frac{7}{2}x आनी -x एकठांय करचें.
\frac{5}{2}x+\frac{3}{2}x^{2}
0 मेळोवंक -4 आनी 4 ची बेरीज करची.
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
3-x न \frac{1}{2}x गुणपाक विभाजक विशमाचो वापर करचो.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x+1 न 3 गुणपाक विभाजक विशमाचो वापर करचो.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
वितरक गूणधर्माचो वापर करून 3x+3 क x-1 न गुणचें आनी संज्ञां भशेन एकठावणी करची.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{5}{2}x^{2} मेळोवंक -\frac{1}{2}x^{2} आनी 3x^{2} एकठांय करचें.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
बायनोमियल प्रमेयाचो वापर करून \left(a-b\right)^{2}=a^{2}-2ab+b^{2} विस्तारावचें \left(x-1\right)^{2}.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x^{2}-2x+1 न x गुणपाक विभाजक विशमाचो वापर करचो.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x^{3}-2x^{2}+x चो विरोधी सोदूंक, दरेक सज्ञेचो विरोधी सोदचो.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{9}{2}x^{2} मेळोवंक \frac{5}{2}x^{2} आनी 2x^{2} एकठांय करचें.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{1}{2}x मेळोवंक \frac{3}{2}x आनी -x एकठांय करचें.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
बायनोमियल प्रमेयाचो वापर करून \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} विस्तारावचें \left(x-1\right)^{3}.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
0 मेळोवंक -x^{3} आनी x^{3} एकठांय करचें.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
\frac{3}{2}x^{2} मेळोवंक \frac{9}{2}x^{2} आनी -3x^{2} एकठांय करचें.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
\frac{7}{2}x मेळोवंक \frac{1}{2}x आनी 3x एकठांय करचें.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
-4 मेळोवंक -3 आनी 1 वजा करचे.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
2x-8 न -\frac{1}{2} गुणपाक विभाजक विशमाचो वापर करचो.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
\frac{5}{2}x मेळोवंक \frac{7}{2}x आनी -x एकठांय करचें.
\frac{5}{2}x+\frac{3}{2}x^{2}
0 मेळोवंक -4 आनी 4 ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}