x, y에 대한 해 (complex solution)
\left\{\begin{matrix}x=\frac{a}{b}\text{, }y=\frac{b}{c}\text{, }&c\neq 0\text{ and }b\neq 0\text{ and }b\neq a\text{ and }b\neq -a\\x=\frac{b-cy}{b}\text{, }y\in \mathrm{C}\text{, }&a=0\text{ and }b\neq 0\end{matrix}\right.
x, y에 대한 해
\left\{\begin{matrix}x=\frac{a}{b}\text{, }y=\frac{b}{c}\text{, }&c\neq 0\text{ and }b\neq 0\text{ and }|b|\neq |a|\\x=\frac{b-cy}{b}\text{, }y\in \mathrm{R}\text{, }&a=0\text{ and }b\neq 0\end{matrix}\right.
그래프
공유
클립보드에 복사됨
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
bx+cy=a+b
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
bx=\left(-c\right)y+a+b
수식의 양쪽에서 cy을(를) 뺍니다.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
양쪽을 b(으)로 나눕니다.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
\frac{1}{b}에 -cy+a+b을(를) 곱합니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
다른 수식 \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}에서 \frac{-cy+a+b}{b}을(를) x(으)로 치환합니다.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right)에 \frac{-cy+a+b}{b}을(를) 곱합니다.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
-\frac{2acy}{\left(a-b\right)\left(a+b\right)}을(를) \frac{2cay}{\left(b-a\right)\left(b+a\right)}에 추가합니다.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
수식의 양쪽에서 \frac{2a}{a-b}을(를) 뺍니다.
y=\frac{b}{c}
양쪽을 \frac{4ca}{\left(b-a\right)\left(a+b\right)}(으)로 나눕니다.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}에서 y을(를) \frac{b}{c}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-1+\frac{a+b}{b}
-\frac{c}{b}에 \frac{b}{c}을(를) 곱합니다.
x=\frac{a}{b}
\frac{a+b}{b}을(를) -1에 추가합니다.
x=\frac{a}{b},y=\frac{b}{c}
시스템이 이제 해결되었습니다.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
\left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
산술 연산을 수행합니다.
x=\frac{a}{b},y=\frac{b}{c}
행렬 요소 x 및 y을(를) 추출합니다.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
bx 및 \frac{2abx}{\left(a-b\right)\left(a+b\right)}을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right)을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 b을(를) 곱합니다.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
단순화합니다.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
등호 부호 양쪽에서 동류항을 빼서 \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}에서 \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}을(를) 뺍니다.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}을(를) -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}에 추가합니다. \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} 및 -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
\frac{2abcy}{\left(a-b\right)\left(a+b\right)}을(를) -\frac{2bcay}{\left(b-a\right)\left(b+a\right)}에 추가합니다.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
\frac{2ab}{a-b}을(를) -\frac{2ba}{a+b}에 추가합니다.
y=\frac{b}{c}
양쪽을 \frac{4bca}{\left(a-b\right)\left(a+b\right)}(으)로 나눕니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}에서 y을(를) \frac{b}{c}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right)에 \frac{b}{c}을(를) 곱합니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
수식의 양쪽에서 \frac{2ab}{\left(b-a\right)\left(b+a\right)}을(를) 뺍니다.
x=\frac{a}{b}
양쪽을 a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right)(으)로 나눕니다.
x=\frac{a}{b},y=\frac{b}{c}
시스템이 이제 해결되었습니다.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
bx+cy=a+b
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
bx=\left(-c\right)y+a+b
수식의 양쪽에서 cy을(를) 뺍니다.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
양쪽을 b(으)로 나눕니다.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
\frac{1}{b}에 -cy+a+b을(를) 곱합니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
다른 수식 \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}에서 \frac{-cy+a+b}{b}을(를) x(으)로 치환합니다.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right)에 \frac{-cy+a+b}{b}을(를) 곱합니다.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
-\frac{2acy}{\left(a-b\right)\left(a+b\right)}을(를) \frac{2cay}{\left(b-a\right)\left(b+a\right)}에 추가합니다.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
수식의 양쪽에서 \frac{2a}{a-b}을(를) 뺍니다.
y=\frac{b}{c}
양쪽을 \frac{4ca}{\left(b-a\right)\left(a+b\right)}(으)로 나눕니다.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}에서 y을(를) \frac{b}{c}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-1+\frac{a+b}{b}
-\frac{c}{b}에 \frac{b}{c}을(를) 곱합니다.
x=\frac{a}{b}
\frac{a+b}{b}을(를) -1\text{, }|b|\neq |a|에 추가합니다.
x=\frac{a}{b},y=\frac{b}{c}
시스템이 이제 해결되었습니다.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
\left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
산술 연산을 수행합니다.
x=\frac{a}{b},y=\frac{b}{c}
행렬 요소 x 및 y을(를) 추출합니다.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
bx 및 \frac{2abx}{\left(a-b\right)\left(a+b\right)}을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right)을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 b을(를) 곱합니다.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
단순화합니다.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
등호 부호 양쪽에서 동류항을 빼서 \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}에서 \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}을(를) 뺍니다.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}을(를) -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}에 추가합니다. \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} 및 -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
\frac{2abcy}{\left(a-b\right)\left(a+b\right)}을(를) -\frac{2bcay}{\left(b-a\right)\left(b+a\right)}에 추가합니다.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
\frac{2ab}{a-b}을(를) -\frac{2ba}{a+b}에 추가합니다.
y=\frac{b}{c}
양쪽을 \frac{4bca}{\left(a-b\right)\left(a+b\right)}(으)로 나눕니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}에서 y을(를) \frac{b}{c}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right)에 \frac{b}{c}을(를) 곱합니다.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
수식의 양쪽에서 \frac{2ab}{\left(b-a\right)\left(b+a\right)}을(를) 뺍니다.
x=\frac{a}{b}
양쪽을 a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right)(으)로 나눕니다.
x=\frac{a}{b},y=\frac{b}{c}
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}