x에 대한 해
x=-5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
그래프
공유
클립보드에 복사됨
2xx-15+x\times 7=0
0으로 나누기가 정의되지 않았으므로 x 변수는 0과(와) 같을 수 없습니다. 수식의 양쪽 모두에 x을(를) 곱합니다.
2x^{2}-15+x\times 7=0
x과(와) x을(를) 곱하여 x^{2}(을)를 구합니다.
2x^{2}+7x-15=0
다항식을 표준 형식으로 재정렬합니다. 항을 최고 곱에서 최저 곱의 순으로 배치합니다.
a+b=7 ab=2\left(-15\right)=-30
수식을 계산하려면 그룹화를 통해 왼쪽을 인수 분해합니다. 우선 왼쪽을 2x^{2}+ax+bx-15(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
-1,30 -2,15 -3,10 -5,6
ab가 음수 이기 때문에 a 및 b에는 반대 기호가 있습니다. a+b이(가) 양수이므로 양수는 음수보다 큰 절대값을 가집니다. 제품 -30을(를) 제공하는 모든 정수 쌍을 나열합니다.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
각 쌍의 합계를 계산합니다.
a=-3 b=10
이 해답은 합계 7이(가) 도출되는 쌍입니다.
\left(2x^{2}-3x\right)+\left(10x-15\right)
2x^{2}+7x-15을(를) \left(2x^{2}-3x\right)+\left(10x-15\right)(으)로 다시 작성합니다.
x\left(2x-3\right)+5\left(2x-3\right)
첫 번째 그룹 및 5에서 x를 제한 합니다.
\left(2x-3\right)\left(x+5\right)
분배 법칙을 사용하여 공통항 2x-3을(를) 인수 분해합니다.
x=\frac{3}{2} x=-5
수식 솔루션을 찾으려면 2x-3=0을 해결 하 고, x+5=0.
2xx-15+x\times 7=0
0으로 나누기가 정의되지 않았으므로 x 변수는 0과(와) 같을 수 없습니다. 수식의 양쪽 모두에 x을(를) 곱합니다.
2x^{2}-15+x\times 7=0
x과(와) x을(를) 곱하여 x^{2}(을)를 구합니다.
2x^{2}+7x-15=0
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
x=\frac{-7±\sqrt{7^{2}-4\times 2\left(-15\right)}}{2\times 2}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 2을(를) a로, 7을(를) b로, -15을(를) c로 치환합니다.
x=\frac{-7±\sqrt{49-4\times 2\left(-15\right)}}{2\times 2}
7을(를) 제곱합니다.
x=\frac{-7±\sqrt{49-8\left(-15\right)}}{2\times 2}
-4에 2을(를) 곱합니다.
x=\frac{-7±\sqrt{49+120}}{2\times 2}
-8에 -15을(를) 곱합니다.
x=\frac{-7±\sqrt{169}}{2\times 2}
49을(를) 120에 추가합니다.
x=\frac{-7±13}{2\times 2}
169의 제곱근을 구합니다.
x=\frac{-7±13}{4}
2에 2을(를) 곱합니다.
x=\frac{6}{4}
±이(가) 플러스일 때 수식 x=\frac{-7±13}{4}을(를) 풉니다. -7을(를) 13에 추가합니다.
x=\frac{3}{2}
2을(를) 추출 및 상쇄하여 분수 \frac{6}{4}을(를) 기약 분수로 약분합니다.
x=-\frac{20}{4}
±이(가) 마이너스일 때 수식 x=\frac{-7±13}{4}을(를) 풉니다. -7에서 13을(를) 뺍니다.
x=-5
-20을(를) 4(으)로 나눕니다.
x=\frac{3}{2} x=-5
수식이 이제 해결되었습니다.
2xx-15+x\times 7=0
0으로 나누기가 정의되지 않았으므로 x 변수는 0과(와) 같을 수 없습니다. 수식의 양쪽 모두에 x을(를) 곱합니다.
2x^{2}-15+x\times 7=0
x과(와) x을(를) 곱하여 x^{2}(을)를 구합니다.
2x^{2}+x\times 7=15
양쪽에 15을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
2x^{2}+7x=15
이와 같은 근의 공식은 제곱을 완성하여 해를 구할 수 있습니다. 제곱을 완성하려면 먼저 수식이 x^{2}+bx=c 형식이어야 합니다.
\frac{2x^{2}+7x}{2}=\frac{15}{2}
양쪽을 2(으)로 나눕니다.
x^{2}+\frac{7}{2}x=\frac{15}{2}
2(으)로 나누면 2(으)로 곱하기가 원상태로 돌아갑니다.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=\frac{15}{2}+\left(\frac{7}{4}\right)^{2}
x 항의 계수인 \frac{7}{2}을(를) 2(으)로 나눠서 \frac{7}{4}을(를) 구합니다. 그런 다음 \frac{7}{4}의 제곱을 수식의 양쪽에 더합니다. 이 단계를 수행하면 수식의 왼쪽이 완전 제곱이 됩니다.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{15}{2}+\frac{49}{16}
분수의 분자와 분모를 모두 제곱하여 \frac{7}{4}을(를) 제곱합니다.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{169}{16}
공통분모를 찾고 분자를 더하여 \frac{15}{2}을(를) \frac{49}{16}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
\left(x+\frac{7}{4}\right)^{2}=\frac{169}{16}
인수 x^{2}+\frac{7}{2}x+\frac{49}{16}. 일반적으로 x^{2}+bx+c 완벽한 제곱인 경우 항상 \left(x+\frac{b}{2}\right)^{2} 인수로 지정할 수 있습니다.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{169}{16}}
수식 양쪽의 제곱근을 구합니다.
x+\frac{7}{4}=\frac{13}{4} x+\frac{7}{4}=-\frac{13}{4}
단순화합니다.
x=\frac{3}{2} x=-5
수식의 양쪽에서 \frac{7}{4}을(를) 뺍니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}