인수 분해
4\left(g+6\right)\left(3g+2\right)
계산
4\left(g+6\right)\left(3g+2\right)
공유
클립보드에 복사됨
4\left(3g^{2}+20g+12\right)
4을(를) 인수 분해합니다.
a+b=20 ab=3\times 12=36
3g^{2}+20g+12을(를) 고려하세요. 식을 그룹화하여 인수 분해합니다. 먼저 식을 3g^{2}+ag+bg+12(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
1,36 2,18 3,12 4,9 6,6
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 양수 이기 때문에 a 및 b 모두 양수입니다. 제품 36을(를) 제공하는 모든 정수 쌍을 나열합니다.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
각 쌍의 합계를 계산합니다.
a=2 b=18
이 해답은 합계 20이(가) 도출되는 쌍입니다.
\left(3g^{2}+2g\right)+\left(18g+12\right)
3g^{2}+20g+12을(를) \left(3g^{2}+2g\right)+\left(18g+12\right)(으)로 다시 작성합니다.
g\left(3g+2\right)+6\left(3g+2\right)
첫 번째 그룹 및 6에서 g를 제한 합니다.
\left(3g+2\right)\left(g+6\right)
분배 법칙을 사용하여 공통항 3g+2을(를) 인수 분해합니다.
4\left(3g+2\right)\left(g+6\right)
완전한 인수분해식을 다시 작성하세요.
12g^{2}+80g+48=0
이차 다항식은 변환 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 인수 분해할 수 있습니다, 여기서 x_{1} 및 x_{2}는 이차방정식 ax^{2}+bx+c=0의 해답입니다.
g=\frac{-80±\sqrt{80^{2}-4\times 12\times 48}}{2\times 12}
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
g=\frac{-80±\sqrt{6400-4\times 12\times 48}}{2\times 12}
80을(를) 제곱합니다.
g=\frac{-80±\sqrt{6400-48\times 48}}{2\times 12}
-4에 12을(를) 곱합니다.
g=\frac{-80±\sqrt{6400-2304}}{2\times 12}
-48에 48을(를) 곱합니다.
g=\frac{-80±\sqrt{4096}}{2\times 12}
6400을(를) -2304에 추가합니다.
g=\frac{-80±64}{2\times 12}
4096의 제곱근을 구합니다.
g=\frac{-80±64}{24}
2에 12을(를) 곱합니다.
g=-\frac{16}{24}
±이(가) 플러스일 때 수식 g=\frac{-80±64}{24}을(를) 풉니다. -80을(를) 64에 추가합니다.
g=-\frac{2}{3}
8을(를) 추출 및 상쇄하여 분수 \frac{-16}{24}을(를) 기약 분수로 약분합니다.
g=-\frac{144}{24}
±이(가) 마이너스일 때 수식 g=\frac{-80±64}{24}을(를) 풉니다. -80에서 64을(를) 뺍니다.
g=-6
-144을(를) 24(으)로 나눕니다.
12g^{2}+80g+48=12\left(g-\left(-\frac{2}{3}\right)\right)\left(g-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 원래 수식을 인수 분해합니다. -\frac{2}{3}을(를) x_{1}로 치환하고 -6을(를) x_{2}로 치환합니다.
12g^{2}+80g+48=12\left(g+\frac{2}{3}\right)\left(g+6\right)
p-\left(-q\right) 형식의 모든 수식을 p+q(으)로 단순화합니다.
12g^{2}+80g+48=12\times \frac{3g+2}{3}\left(g+6\right)
공통분모를 찾고 분자를 더하여 \frac{2}{3}을(를) g에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
12g^{2}+80g+48=4\left(3g+2\right)\left(g+6\right)
12 및 3에서 최대 공약수 3을(를) 약분합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}