계산
10+2i
실수부
10
공유
클립보드에 복사됨
12+0-2i\left(-1-i\right)
0과(와) 7i을(를) 곱하여 0(을)를 구합니다.
12-2i\left(-1-i\right)
12과(와) 0을(를) 더하여 12을(를) 구합니다.
12-\left(2i\left(-1\right)+2\left(-1\right)i^{2}\right)
2i에 -1-i을(를) 곱합니다.
12-\left(2i\left(-1\right)+2\left(-1\right)\left(-1\right)\right)
기본적으로 i^{2}은(는) -1입니다.
12-\left(2-2i\right)
2i\left(-1\right)+2\left(-1\right)\left(-1\right)에서 곱하기를 합니다. 항의 순서를 재정렬합니다.
12-2-2i
해당부와 허수부를 빼서 12에서 2-2i을(를) 뺍니다.
10+2i
12에서 2을(를) 뺍니다.
Re(12+0-2i\left(-1-i\right))
0과(와) 7i을(를) 곱하여 0(을)를 구합니다.
Re(12-2i\left(-1-i\right))
12과(와) 0을(를) 더하여 12을(를) 구합니다.
Re(12-\left(2i\left(-1\right)+2\left(-1\right)i^{2}\right))
2i에 -1-i을(를) 곱합니다.
Re(12-\left(2i\left(-1\right)+2\left(-1\right)\left(-1\right)\right))
기본적으로 i^{2}은(는) -1입니다.
Re(12-\left(2-2i\right))
2i\left(-1\right)+2\left(-1\right)\left(-1\right)에서 곱하기를 합니다. 항의 순서를 재정렬합니다.
Re(12-2-2i)
해당부와 허수부를 빼서 12에서 2-2i을(를) 뺍니다.
Re(10+2i)
12에서 2을(를) 뺍니다.
10
10+2i의 실수부는 10입니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}