y에 대한 해
y = \frac{3}{10} = 0.3
x에 대한 해 (complex solution)
x\in \mathrm{C}
y = \frac{3}{10} = 0.3
x에 대한 해
x\in \mathrm{R}
y = \frac{3}{10} = 0.3
그래프
공유
클립보드에 복사됨
-x+5y+\frac{3}{2}=-x+10y
분배 법칙을 사용하여 -\frac{1}{2}에 2x-10y-3(을)를 곱합니다.
-x+5y+\frac{3}{2}-10y=-x
양쪽 모두에서 10y을(를) 뺍니다.
-x-5y+\frac{3}{2}=-x
5y과(와) -10y을(를) 결합하여 -5y(을)를 구합니다.
-5y+\frac{3}{2}=-x+x
양쪽에 x을(를) 더합니다.
-5y+\frac{3}{2}=0
-x과(와) x을(를) 결합하여 0(을)를 구합니다.
-5y=-\frac{3}{2}
양쪽 모두에서 \frac{3}{2}을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
y=\frac{-\frac{3}{2}}{-5}
양쪽을 -5(으)로 나눕니다.
y=\frac{-3}{2\left(-5\right)}
\frac{-\frac{3}{2}}{-5}을(를) 단일 분수로 표현합니다.
y=\frac{-3}{-10}
2과(와) -5을(를) 곱하여 -10(을)를 구합니다.
y=\frac{3}{10}
분수 \frac{-3}{-10}은(는) 분자와 분모 모두에서 음수 부호를 제거하여 \frac{3}{10}(으)로 단순화할 수 있습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}