\lim \frac { m ^ { 2 } - m + 1 } { m ^ { 2 } + m + 1 } = 1
l에 대한 해
l=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\neq 0\text{ and }m\neq \frac{-1+\sqrt{3}i}{2}\text{ and }m\neq \frac{-\sqrt{3}i-1}{2}
공유
클립보드에 복사됨
\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l=1
이 수식은 표준 형식입니다.
\frac{\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
양쪽을 \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1})(으)로 나눕니다.
l=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
\left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1})(으)로 나누면 \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1})(으)로 곱하기가 원상태로 돌아갑니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}