x, y에 대한 해
x=-10
y=10
그래프
공유
클립보드에 복사됨
-8x-9y=-10,-4x-3y=10
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
-8x-9y=-10
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
-8x=9y-10
수식의 양쪽에 9y을(를) 더합니다.
x=-\frac{1}{8}\left(9y-10\right)
양쪽을 -8(으)로 나눕니다.
x=-\frac{9}{8}y+\frac{5}{4}
-\frac{1}{8}에 9y-10을(를) 곱합니다.
-4\left(-\frac{9}{8}y+\frac{5}{4}\right)-3y=10
다른 수식 -4x-3y=10에서 -\frac{9y}{8}+\frac{5}{4}을(를) x(으)로 치환합니다.
\frac{9}{2}y-5-3y=10
-4에 -\frac{9y}{8}+\frac{5}{4}을(를) 곱합니다.
\frac{3}{2}y-5=10
\frac{9y}{2}을(를) -3y에 추가합니다.
\frac{3}{2}y=15
수식의 양쪽에 5을(를) 더합니다.
y=10
수식의 양쪽을 \frac{3}{2}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=-\frac{9}{8}\times 10+\frac{5}{4}
x=-\frac{9}{8}y+\frac{5}{4}에서 y을(를) 10(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=\frac{-45+5}{4}
-\frac{9}{8}에 10을(를) 곱합니다.
x=-10
공통분모를 찾고 분자를 더하여 \frac{5}{4}을(를) -\frac{45}{4}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=-10,y=10
시스템이 이제 해결되었습니다.
-8x-9y=-10,-4x-3y=10
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-9\\-4&-3\end{matrix}\right))\left(\begin{matrix}-10\\10\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}&-\frac{-9}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}\\-\frac{-4}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}&-\frac{8}{-8\left(-3\right)-\left(-9\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\10\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{3}{4}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-10\\10\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-10\right)-\frac{3}{4}\times 10\\-\frac{1}{3}\left(-10\right)+\frac{2}{3}\times 10\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\10\end{matrix}\right)
산술 연산을 수행합니다.
x=-10,y=10
행렬 요소 x 및 y을(를) 추출합니다.
-8x-9y=-10,-4x-3y=10
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-4\left(-8\right)x-4\left(-9\right)y=-4\left(-10\right),-8\left(-4\right)x-8\left(-3\right)y=-8\times 10
-8x 및 -4x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 -4을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 -8을(를) 곱합니다.
32x+36y=40,32x+24y=-80
단순화합니다.
32x-32x+36y-24y=40+80
등호 부호 양쪽에서 동류항을 빼서 32x+36y=40에서 32x+24y=-80을(를) 뺍니다.
36y-24y=40+80
32x을(를) -32x에 추가합니다. 32x 및 -32x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
12y=40+80
36y을(를) -24y에 추가합니다.
12y=120
40을(를) 80에 추가합니다.
y=10
양쪽을 12(으)로 나눕니다.
-4x-3\times 10=10
-4x-3y=10에서 y을(를) 10(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
-4x-30=10
-3에 10을(를) 곱합니다.
-4x=40
수식의 양쪽에 30을(를) 더합니다.
x=-10
양쪽을 -4(으)로 나눕니다.
x=-10,y=10
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}