기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

4x-2y=8,5x+3y=-1
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
4x-2y=8
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
4x=2y+8
수식의 양쪽에 2y을(를) 더합니다.
x=\frac{1}{4}\left(2y+8\right)
양쪽을 4(으)로 나눕니다.
x=\frac{1}{2}y+2
\frac{1}{4}에 8+2y을(를) 곱합니다.
5\left(\frac{1}{2}y+2\right)+3y=-1
다른 수식 5x+3y=-1에서 \frac{y}{2}+2을(를) x(으)로 치환합니다.
\frac{5}{2}y+10+3y=-1
5에 \frac{y}{2}+2을(를) 곱합니다.
\frac{11}{2}y+10=-1
\frac{5y}{2}을(를) 3y에 추가합니다.
\frac{11}{2}y=-11
수식의 양쪽에서 10을(를) 뺍니다.
y=-2
수식의 양쪽을 \frac{11}{2}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=\frac{1}{2}\left(-2\right)+2
x=\frac{1}{2}y+2에서 y을(를) -2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-1+2
\frac{1}{2}에 -2을(를) 곱합니다.
x=1
2을(를) -1에 추가합니다.
x=1,y=-2
시스템이 이제 해결되었습니다.
4x-2y=8,5x+3y=-1
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}4&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}4&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
\left(\begin{matrix}4&-2\\5&3\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\times 5\right)}&-\frac{-2}{4\times 3-\left(-2\times 5\right)}\\-\frac{5}{4\times 3-\left(-2\times 5\right)}&\frac{4}{4\times 3-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\-\frac{5}{22}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 8+\frac{1}{11}\left(-1\right)\\-\frac{5}{22}\times 8+\frac{2}{11}\left(-1\right)\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
산술 연산을 수행합니다.
x=1,y=-2
행렬 요소 x 및 y을(를) 추출합니다.
4x-2y=8,5x+3y=-1
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
5\times 4x+5\left(-2\right)y=5\times 8,4\times 5x+4\times 3y=4\left(-1\right)
4x 및 5x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 5을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 4을(를) 곱합니다.
20x-10y=40,20x+12y=-4
단순화합니다.
20x-20x-10y-12y=40+4
등호 부호 양쪽에서 동류항을 빼서 20x-10y=40에서 20x+12y=-4을(를) 뺍니다.
-10y-12y=40+4
20x을(를) -20x에 추가합니다. 20x 및 -20x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-22y=40+4
-10y을(를) -12y에 추가합니다.
-22y=44
40을(를) 4에 추가합니다.
y=-2
양쪽을 -22(으)로 나눕니다.
5x+3\left(-2\right)=-1
5x+3y=-1에서 y을(를) -2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
5x-6=-1
3에 -2을(를) 곱합니다.
5x=5
수식의 양쪽에 6을(를) 더합니다.
x=1
양쪽을 5(으)로 나눕니다.
x=1,y=-2
시스템이 이제 해결되었습니다.