\left\{ \begin{array} { l } { 21 x + 7 y = 42 } \\ { - 5 x + 5 y = 10 } \end{array} \right.
x, y에 대한 해
x=1
y=3
그래프
공유
클립보드에 복사됨
21x+7y=42,-5x+5y=10
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
21x+7y=42
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
21x=-7y+42
수식의 양쪽에서 7y을(를) 뺍니다.
x=\frac{1}{21}\left(-7y+42\right)
양쪽을 21(으)로 나눕니다.
x=-\frac{1}{3}y+2
\frac{1}{21}에 -7y+42을(를) 곱합니다.
-5\left(-\frac{1}{3}y+2\right)+5y=10
다른 수식 -5x+5y=10에서 -\frac{y}{3}+2을(를) x(으)로 치환합니다.
\frac{5}{3}y-10+5y=10
-5에 -\frac{y}{3}+2을(를) 곱합니다.
\frac{20}{3}y-10=10
\frac{5y}{3}을(를) 5y에 추가합니다.
\frac{20}{3}y=20
수식의 양쪽에 10을(를) 더합니다.
y=3
수식의 양쪽을 \frac{20}{3}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=-\frac{1}{3}\times 3+2
x=-\frac{1}{3}y+2에서 y을(를) 3(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-1+2
-\frac{1}{3}에 3을(를) 곱합니다.
x=1
2을(를) -1에 추가합니다.
x=1,y=3
시스템이 이제 해결되었습니다.
21x+7y=42,-5x+5y=10
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}21&7\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42\\10\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}21&7\\-5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}42\\10\end{matrix}\right)
\left(\begin{matrix}21&7\\-5&5\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}42\\10\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}21&7\\-5&5\end{matrix}\right))\left(\begin{matrix}42\\10\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21\times 5-7\left(-5\right)}&-\frac{7}{21\times 5-7\left(-5\right)}\\-\frac{-5}{21\times 5-7\left(-5\right)}&\frac{21}{21\times 5-7\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}42\\10\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{28}&-\frac{1}{20}\\\frac{1}{28}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}42\\10\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{28}\times 42-\frac{1}{20}\times 10\\\frac{1}{28}\times 42+\frac{3}{20}\times 10\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
산술 연산을 수행합니다.
x=1,y=3
행렬 요소 x 및 y을(를) 추출합니다.
21x+7y=42,-5x+5y=10
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-5\times 21x-5\times 7y=-5\times 42,21\left(-5\right)x+21\times 5y=21\times 10
21x 및 -5x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 -5을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 21을(를) 곱합니다.
-105x-35y=-210,-105x+105y=210
단순화합니다.
-105x+105x-35y-105y=-210-210
등호 부호 양쪽에서 동류항을 빼서 -105x-35y=-210에서 -105x+105y=210을(를) 뺍니다.
-35y-105y=-210-210
-105x을(를) 105x에 추가합니다. -105x 및 105x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-140y=-210-210
-35y을(를) -105y에 추가합니다.
-140y=-420
-210을(를) -210에 추가합니다.
y=3
양쪽을 -140(으)로 나눕니다.
-5x+5\times 3=10
-5x+5y=10에서 y을(를) 3(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
-5x+15=10
5에 3을(를) 곱합니다.
-5x=-5
수식의 양쪽에서 15을(를) 뺍니다.
x=1
양쪽을 -5(으)로 나눕니다.
x=1,y=3
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}