기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

2x+3y=15,x-2y=3
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
2x+3y=15
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
2x=-3y+15
수식의 양쪽에서 3y을(를) 뺍니다.
x=\frac{1}{2}\left(-3y+15\right)
양쪽을 2(으)로 나눕니다.
x=-\frac{3}{2}y+\frac{15}{2}
\frac{1}{2}에 -3y+15을(를) 곱합니다.
-\frac{3}{2}y+\frac{15}{2}-2y=3
다른 수식 x-2y=3에서 \frac{-3y+15}{2}을(를) x(으)로 치환합니다.
-\frac{7}{2}y+\frac{15}{2}=3
-\frac{3y}{2}을(를) -2y에 추가합니다.
-\frac{7}{2}y=-\frac{9}{2}
수식의 양쪽에서 \frac{15}{2}을(를) 뺍니다.
y=\frac{9}{7}
수식의 양쪽을 -\frac{7}{2}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=-\frac{3}{2}\times \frac{9}{7}+\frac{15}{2}
x=-\frac{3}{2}y+\frac{15}{2}에서 y을(를) \frac{9}{7}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-\frac{27}{14}+\frac{15}{2}
분자는 분자끼리 분모는 분모끼리 곱하여 -\frac{3}{2}에 \frac{9}{7}을(를) 곱합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=\frac{39}{7}
공통분모를 찾고 분자를 더하여 \frac{15}{2}을(를) -\frac{27}{14}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=\frac{39}{7},y=\frac{9}{7}
시스템이 이제 해결되었습니다.
2x+3y=15,x-2y=3
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\3\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}15\\3\end{matrix}\right)
\left(\begin{matrix}2&3\\1&-2\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}15\\3\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&-2\end{matrix}\right))\left(\begin{matrix}15\\3\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3}&-\frac{3}{2\left(-2\right)-3}\\-\frac{1}{2\left(-2\right)-3}&\frac{2}{2\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}15\\3\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{3}{7}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}15\\3\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 15+\frac{3}{7}\times 3\\\frac{1}{7}\times 15-\frac{2}{7}\times 3\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{39}{7}\\\frac{9}{7}\end{matrix}\right)
산술 연산을 수행합니다.
x=\frac{39}{7},y=\frac{9}{7}
행렬 요소 x 및 y을(를) 추출합니다.
2x+3y=15,x-2y=3
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
2x+3y=15,2x+2\left(-2\right)y=2\times 3
2x 및 x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 1을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 2을(를) 곱합니다.
2x+3y=15,2x-4y=6
단순화합니다.
2x-2x+3y+4y=15-6
등호 부호 양쪽에서 동류항을 빼서 2x+3y=15에서 2x-4y=6을(를) 뺍니다.
3y+4y=15-6
2x을(를) -2x에 추가합니다. 2x 및 -2x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
7y=15-6
3y을(를) 4y에 추가합니다.
7y=9
15을(를) -6에 추가합니다.
y=\frac{9}{7}
양쪽을 7(으)로 나눕니다.
x-2\times \frac{9}{7}=3
x-2y=3에서 y을(를) \frac{9}{7}(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x-\frac{18}{7}=3
-2에 \frac{9}{7}을(를) 곱합니다.
x=\frac{39}{7}
수식의 양쪽에 \frac{18}{7}을(를) 더합니다.
x=\frac{39}{7},y=\frac{9}{7}
시스템이 이제 해결되었습니다.