\left\{ \begin{array} { l } { 0 = - 1 + a + b } \\ { 0 = - 9 + 3 a + b } \end{array} \right.
a, b에 대한 해
a=4
b=-3
공유
클립보드에 복사됨
-1+a+b=0
첫 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
a+b=1
양쪽에 1을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
-9+3a+b=0
두 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
3a+b=9
양쪽에 9을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
a+b=1,3a+b=9
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
a+b=1
수식 중 하나를 선택하고 등호 부호 왼쪽에서 a을(를) 고립시켜 a에 대한 해를 찾습니다.
a=-b+1
수식의 양쪽에서 b을(를) 뺍니다.
3\left(-b+1\right)+b=9
다른 수식 3a+b=9에서 -b+1을(를) a(으)로 치환합니다.
-3b+3+b=9
3에 -b+1을(를) 곱합니다.
-2b+3=9
-3b을(를) b에 추가합니다.
-2b=6
수식의 양쪽에서 3을(를) 뺍니다.
b=-3
양쪽을 -2(으)로 나눕니다.
a=-\left(-3\right)+1
a=-b+1에서 b을(를) -3(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 a에 대한 해를 바로 찾을 수 있습니다.
a=3+1
-1에 -3을(를) 곱합니다.
a=4
1을(를) 3에 추가합니다.
a=4,b=-3
시스템이 이제 해결되었습니다.
-1+a+b=0
첫 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
a+b=1
양쪽에 1을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
-9+3a+b=0
두 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
3a+b=9
양쪽에 9을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
a+b=1,3a+b=9
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{1}{1-3}\\-\frac{3}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}+\frac{1}{2}\times 9\\\frac{3}{2}-\frac{1}{2}\times 9\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
산술 연산을 수행합니다.
a=4,b=-3
행렬 요소 a 및 b을(를) 추출합니다.
-1+a+b=0
첫 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
a+b=1
양쪽에 1을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
-9+3a+b=0
두 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
3a+b=9
양쪽에 9을(를) 더합니다. 모든 항목에 0을 더한 결과는 해당 항목 자체입니다.
a+b=1,3a+b=9
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
a-3a+b-b=1-9
등호 부호 양쪽에서 동류항을 빼서 a+b=1에서 3a+b=9을(를) 뺍니다.
a-3a=1-9
b을(를) -b에 추가합니다. b 및 -b이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-2a=1-9
a을(를) -3a에 추가합니다.
-2a=-8
1을(를) -9에 추가합니다.
a=4
양쪽을 -2(으)로 나눕니다.
3\times 4+b=9
3a+b=9에서 a을(를) 4(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 b에 대한 해를 바로 찾을 수 있습니다.
12+b=9
3에 4을(를) 곱합니다.
b=-3
수식의 양쪽에서 12을(를) 뺍니다.
a=4,b=-3
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}