계산
\frac{1}{60}\approx 0.016666667
공유
클립보드에 복사됨
\int _{0}^{1}x^{2}\left(1-3x+3x^{2}-x^{3}\right)\mathrm{d}x
이항 정리 \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}을(를) \left(1-x\right)^{3}을(를) 확장합니다.
\int _{0}^{1}x^{2}-3x^{3}+3x^{4}-x^{5}\mathrm{d}x
분배 법칙을 사용하여 x^{2}에 1-3x+3x^{2}-x^{3}(을)를 곱합니다.
\int x^{2}-3x^{3}+3x^{4}-x^{5}\mathrm{d}x
먼저 부정적분을 구합니다.
\int x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int -x^{5}\mathrm{d}x
항별로 총계를 적분합니다.
\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x+3\int x^{4}\mathrm{d}x-\int x^{5}\mathrm{d}x
각 항에서 상수를 인수 분해합니다.
\frac{x^{3}}{3}-3\int x^{3}\mathrm{d}x+3\int x^{4}\mathrm{d}x-\int x^{5}\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{3}}{3}으로 \int x^{2}\mathrm{d}x를 바꾸십시오.
\frac{x^{3}}{3}-\frac{3x^{4}}{4}+3\int x^{4}\mathrm{d}x-\int x^{5}\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{4}}{4}으로 \int x^{3}\mathrm{d}x를 바꾸십시오. -3에 \frac{x^{4}}{4}을(를) 곱합니다.
\frac{x^{3}}{3}-\frac{3x^{4}}{4}+\frac{3x^{5}}{5}-\int x^{5}\mathrm{d}x
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{5}}{5}으로 \int x^{4}\mathrm{d}x를 바꾸십시오. 3에 \frac{x^{5}}{5}을(를) 곱합니다.
\frac{x^{3}}{3}-\frac{3x^{4}}{4}+\frac{3x^{5}}{5}-\frac{x^{6}}{6}
k\neq -1에 대 한 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 이므로 \frac{x^{6}}{6}으로 \int x^{5}\mathrm{d}x를 바꾸십시오. -1에 \frac{x^{6}}{6}을(를) 곱합니다.
-\frac{x^{6}}{6}+\frac{3x^{5}}{5}-\frac{3x^{4}}{4}+\frac{x^{3}}{3}
단순화합니다.
-\frac{1^{6}}{6}+\frac{3}{5}\times 1^{5}-\frac{3}{4}\times 1^{4}+\frac{1^{3}}{3}-\left(-\frac{0^{6}}{6}+\frac{3}{5}\times 0^{5}-\frac{3}{4}\times 0^{4}+\frac{0^{3}}{3}\right)
정적분은 적분의 상한에서 구해진 수식의 미분 계수에서 적분의 하한에서 계산된 미분 계수를 뺀 값입니다.
\frac{1}{60}
단순화합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}