y에 대한 해
y=\frac{z\left(x-105\right)^{2}}{10000}
x\neq 105
x에 대한 해 (complex solution)
\left\{\begin{matrix}\\x\neq 105\text{, }&\text{unconditionally}\\x=-100z^{-0.5}\sqrt{y}+105\text{; }x=100z^{-0.5}\sqrt{y}+105\text{, }&y\neq 0\text{ and }z\neq 0\end{matrix}\right.
x에 대한 해
\left\{\begin{matrix}\\x\neq 105\text{, }&\text{unconditionally}\\x=-100\sqrt{\frac{y}{z}}+105\text{; }x=100\sqrt{\frac{y}{z}}+105\text{, }&z>0\text{ and }y>0\\x=-100\sqrt{\frac{y}{z}}+105\text{; }x=100\sqrt{\frac{y}{z}}+105\text{, }&z<0\text{ and }y<0\end{matrix}\right.
공유
클립보드에 복사됨
\frac{y}{0.01^{2}\left(x-105\right)^{2}}=z
\left(0.01\left(x-105\right)\right)^{2}을(를) 전개합니다.
\frac{y}{0.0001\left(x-105\right)^{2}}=z
0.01의 2제곱을 계산하여 0.0001을(를) 구합니다.
\frac{y}{0.0001\left(x^{2}-210x+11025\right)}=z
이항 정리 \left(a-b\right)^{2}=a^{2}-2ab+b^{2}을(를) \left(x-105\right)^{2}을(를) 확장합니다.
\frac{y}{0.0001x^{2}-0.021x+1.1025}=z
분배 법칙을 사용하여 0.0001에 x^{2}-210x+11025(을)를 곱합니다.
\frac{1}{\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025}y=z
이 수식은 표준 형식입니다.
\frac{\frac{1}{\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025}y\left(\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025\right)}{1}=\frac{z\left(\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025\right)}{1}
양쪽을 \left(0.0001x^{2}-0.021x+1.1025\right)^{-1}(으)로 나눕니다.
y=\frac{z\left(\frac{x^{2}}{10000}-\frac{21x}{1000}+1.1025\right)}{1}
\left(0.0001x^{2}-0.021x+1.1025\right)^{-1}(으)로 나누면 \left(0.0001x^{2}-0.021x+1.1025\right)^{-1}(으)로 곱하기가 원상태로 돌아갑니다.
y=\frac{z\left(x-105\right)^{2}}{10000}
z을(를) \left(0.0001x^{2}-0.021x+1.1025\right)^{-1}(으)로 나눕니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}