ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
z ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

z^{2}-\left(-1\right)=-2z
ಎರಡೂ ಕಡೆಗಳಿಂದ -1 ಕಳೆಯಿರಿ.
z^{2}+1=-2z
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
z^{2}+1+2z=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 2z ಸೇರಿಸಿ.
z^{2}+2z+1=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=2 ab=1
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು z^{2}+2z+1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
a=1 b=1
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಅಂತಹ ಏಕೈಕ ಜೋಡಿಯು ಸಿಸ್ಟಂ ಪರಿಹಾರವಾಗಿದೆ.
\left(z+1\right)\left(z+1\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(z+a\right)\left(z+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
\left(z+1\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
z=-1
ಸಮೀಕರಣ ಪರಿಹಾರ ಹುಡುಕಲು, z+1=0 ಪರಿಹರಿಸಿ.
z^{2}-\left(-1\right)=-2z
ಎರಡೂ ಕಡೆಗಳಿಂದ -1 ಕಳೆಯಿರಿ.
z^{2}+1=-2z
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
z^{2}+1+2z=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 2z ಸೇರಿಸಿ.
z^{2}+2z+1=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=2 ab=1\times 1=1
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು z^{2}+az+bz+1 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
a=1 b=1
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಅಂತಹ ಏಕೈಕ ಜೋಡಿಯು ಸಿಸ್ಟಂ ಪರಿಹಾರವಾಗಿದೆ.
\left(z^{2}+z\right)+\left(z+1\right)
\left(z^{2}+z\right)+\left(z+1\right) ನ ಹಾಗೆ z^{2}+2z+1 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
z\left(z+1\right)+z+1
z^{2}+z ರಲ್ಲಿ z ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(z+1\right)\left(z+1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ z+1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(z+1\right)^{2}
ದ್ವಿಪದದ ವರ್ಗವಾಗಿ ಮರುಬರೆಯಿರಿ.
z=-1
ಸಮೀಕರಣ ಪರಿಹಾರ ಹುಡುಕಲು, z+1=0 ಪರಿಹರಿಸಿ.
z^{2}-\left(-1\right)=-2z
ಎರಡೂ ಕಡೆಗಳಿಂದ -1 ಕಳೆಯಿರಿ.
z^{2}+1=-2z
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
z^{2}+1+2z=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 2z ಸೇರಿಸಿ.
z^{2}+2z+1=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
z=\frac{-2±\sqrt{2^{2}-4}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 2 ಮತ್ತು c ಗೆ 1 ಬದಲಿಸಿ.
z=\frac{-2±\sqrt{4-4}}{2}
ವರ್ಗ 2.
z=\frac{-2±\sqrt{0}}{2}
-4 ಗೆ 4 ಸೇರಿಸಿ.
z=-\frac{2}{2}
0 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z=-1
2 ದಿಂದ -2 ಭಾಗಿಸಿ.
z^{2}+2z=-1
ಎರಡೂ ಬದಿಗಳಿಗೆ 2z ಸೇರಿಸಿ.
z^{2}+2z+1^{2}=-1+1^{2}
1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
z^{2}+2z+1=-1+1
ವರ್ಗ 1.
z^{2}+2z+1=0
1 ಗೆ -1 ಸೇರಿಸಿ.
\left(z+1\right)^{2}=0
ಅಪವರ್ತನ z^{2}+2z+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(z+1\right)^{2}}=\sqrt{0}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z+1=0 z+1=0
ಸರಳೀಕೃತಗೊಳಿಸಿ.
z=-1 z=-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
z=-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ. ಪರಿಹಾರಗಳು ಒಂದೇ ಆಗಿವೆ.