z ಪರಿಹರಿಸಿ
z=\frac{-1+2\sqrt{6}i}{5}\approx -0.2+0.979795897i
z=\frac{-2\sqrt{6}i-1}{5}\approx -0.2-0.979795897i
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
z^{2}+\frac{2}{5}z+1=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
z=\frac{-\frac{2}{5}±\sqrt{\left(\frac{2}{5}\right)^{2}-4}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ \frac{2}{5} ಮತ್ತು c ಗೆ 1 ಬದಲಿಸಿ.
z=\frac{-\frac{2}{5}±\sqrt{\frac{4}{25}-4}}{2}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{2}{5} ವರ್ಗಗೊಳಿಸಿ.
z=\frac{-\frac{2}{5}±\sqrt{-\frac{96}{25}}}{2}
-4 ಗೆ \frac{4}{25} ಸೇರಿಸಿ.
z=\frac{-\frac{2}{5}±\frac{4\sqrt{6}i}{5}}{2}
-\frac{96}{25} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z=\frac{-2+4\sqrt{6}i}{2\times 5}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ z=\frac{-\frac{2}{5}±\frac{4\sqrt{6}i}{5}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{4i\sqrt{6}}{5} ಗೆ -\frac{2}{5} ಸೇರಿಸಿ.
z=\frac{-1+2\sqrt{6}i}{5}
2 ದಿಂದ \frac{-2+4i\sqrt{6}}{5} ಭಾಗಿಸಿ.
z=\frac{-4\sqrt{6}i-2}{2\times 5}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ z=\frac{-\frac{2}{5}±\frac{4\sqrt{6}i}{5}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -\frac{2}{5} ದಿಂದ \frac{4i\sqrt{6}}{5} ಕಳೆಯಿರಿ.
z=\frac{-2\sqrt{6}i-1}{5}
2 ದಿಂದ \frac{-2-4i\sqrt{6}}{5} ಭಾಗಿಸಿ.
z=\frac{-1+2\sqrt{6}i}{5} z=\frac{-2\sqrt{6}i-1}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
z^{2}+\frac{2}{5}z+1=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
z^{2}+\frac{2}{5}z+1-1=-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
z^{2}+\frac{2}{5}z=-1
1 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
z^{2}+\frac{2}{5}z+\left(\frac{1}{5}\right)^{2}=-1+\left(\frac{1}{5}\right)^{2}
\frac{1}{5} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{2}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{1}{5} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
z^{2}+\frac{2}{5}z+\frac{1}{25}=-1+\frac{1}{25}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{5} ವರ್ಗಗೊಳಿಸಿ.
z^{2}+\frac{2}{5}z+\frac{1}{25}=-\frac{24}{25}
\frac{1}{25} ಗೆ -1 ಸೇರಿಸಿ.
\left(z+\frac{1}{5}\right)^{2}=-\frac{24}{25}
ಅಪವರ್ತನ z^{2}+\frac{2}{5}z+\frac{1}{25}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(z+\frac{1}{5}\right)^{2}}=\sqrt{-\frac{24}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z+\frac{1}{5}=\frac{2\sqrt{6}i}{5} z+\frac{1}{5}=-\frac{2\sqrt{6}i}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
z=\frac{-1+2\sqrt{6}i}{5} z=\frac{-2\sqrt{6}i-1}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1}{5} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}