y ಪರಿಹರಿಸಿ
y=3
ಗ್ರಾಫ್
ರಸಪ್ರಶ್ನೆ
Algebra
y - 1 = \sqrt { - y + 7 }
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(y-1\right)^{2}=\left(\sqrt{-y+7}\right)^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
y^{2}-2y+1=\left(\sqrt{-y+7}\right)^{2}
\left(y-1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
y^{2}-2y+1=-y+7
2 ನ ಘಾತಕ್ಕೆ \sqrt{-y+7} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು -y+7 ಪಡೆಯಿರಿ.
y^{2}-2y+1+y=7
ಎರಡೂ ಬದಿಗಳಿಗೆ y ಸೇರಿಸಿ.
y^{2}-y+1=7
-y ಪಡೆದುಕೊಳ್ಳಲು -2y ಮತ್ತು y ಕೂಡಿಸಿ.
y^{2}-y+1-7=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 7 ಕಳೆಯಿರಿ.
y^{2}-y-6=0
-6 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 7 ಕಳೆಯಿರಿ.
a+b=-1 ab=-6
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು y^{2}-y-6 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-6 2,-3
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -6 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-6=-5 2-3=-1
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-3 b=2
ಪರಿಹಾರವು -1 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(y-3\right)\left(y+2\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(y+a\right)\left(y+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
y=3 y=-2
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, y-3=0 ಮತ್ತು y+2=0 ಪರಿಹರಿಸಿ.
3-1=\sqrt{-3+7}
y-1=\sqrt{-y+7} ಸಮೀಕರಣದಲ್ಲಿ y ಗಾಗಿ 3 ಬದಲಿಸಿ.
2=2
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ y=3 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
-2-1=\sqrt{-\left(-2\right)+7}
y-1=\sqrt{-y+7} ಸಮೀಕರಣದಲ್ಲಿ y ಗಾಗಿ -2 ಬದಲಿಸಿ.
-3=3
ಸರಳೀಕೃತಗೊಳಿಸಿ. y=-2 ಮೌಲ್ಯವು ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುವುದಿಲ್ಲ ಏಕೆಂದರೆ ಎಡ ಮತ್ತು ಬಲಬದಿಯಲ್ಲಿ ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳಿವೆ.
y=3
ಸಮೀಕರಣ y-1=\sqrt{7-y} ಅನನ್ಯ ಪರಿಹಾರವನ್ನು ಹೊಂದಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}