y ಪರಿಹರಿಸಿ
y=4\sqrt{3}-6\approx 0.92820323
y=-4\sqrt{3}-6\approx -12.92820323
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
y^{2}+12y-12=0
12y ಪಡೆದುಕೊಳ್ಳಲು 4y ಮತ್ತು 8y ಕೂಡಿಸಿ.
y=\frac{-12±\sqrt{12^{2}-4\left(-12\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 12 ಮತ್ತು c ಗೆ -12 ಬದಲಿಸಿ.
y=\frac{-12±\sqrt{144-4\left(-12\right)}}{2}
ವರ್ಗ 12.
y=\frac{-12±\sqrt{144+48}}{2}
-12 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-12±\sqrt{192}}{2}
48 ಗೆ 144 ಸೇರಿಸಿ.
y=\frac{-12±8\sqrt{3}}{2}
192 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{8\sqrt{3}-12}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-12±8\sqrt{3}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8\sqrt{3} ಗೆ -12 ಸೇರಿಸಿ.
y=4\sqrt{3}-6
2 ದಿಂದ -12+8\sqrt{3} ಭಾಗಿಸಿ.
y=\frac{-8\sqrt{3}-12}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-12±8\sqrt{3}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -12 ದಿಂದ 8\sqrt{3} ಕಳೆಯಿರಿ.
y=-4\sqrt{3}-6
2 ದಿಂದ -12-8\sqrt{3} ಭಾಗಿಸಿ.
y=4\sqrt{3}-6 y=-4\sqrt{3}-6
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
y^{2}+12y-12=0
12y ಪಡೆದುಕೊಳ್ಳಲು 4y ಮತ್ತು 8y ಕೂಡಿಸಿ.
y^{2}+12y=12
ಎರಡೂ ಬದಿಗಳಿಗೆ 12 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
y^{2}+12y+6^{2}=12+6^{2}
6 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 12 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 6 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
y^{2}+12y+36=12+36
ವರ್ಗ 6.
y^{2}+12y+36=48
36 ಗೆ 12 ಸೇರಿಸಿ.
\left(y+6\right)^{2}=48
ಅಪವರ್ತನ y^{2}+12y+36. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(y+6\right)^{2}}=\sqrt{48}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y+6=4\sqrt{3} y+6=-4\sqrt{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
y=4\sqrt{3}-6 y=-4\sqrt{3}-6
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}