ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
y ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

y=y^{2}-16
\left(y-4\right)\left(y+4\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 4.
y-y^{2}=-16
ಎರಡೂ ಕಡೆಗಳಿಂದ y^{2} ಕಳೆಯಿರಿ.
y-y^{2}+16=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 16 ಸೇರಿಸಿ.
-y^{2}+y+16=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
y=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 1 ಮತ್ತು c ಗೆ 16 ಬದಲಿಸಿ.
y=\frac{-1±\sqrt{1-4\left(-1\right)\times 16}}{2\left(-1\right)}
ವರ್ಗ 1.
y=\frac{-1±\sqrt{1+4\times 16}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-1±\sqrt{1+64}}{2\left(-1\right)}
16 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-1±\sqrt{65}}{2\left(-1\right)}
64 ಗೆ 1 ಸೇರಿಸಿ.
y=\frac{-1±\sqrt{65}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{\sqrt{65}-1}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-1±\sqrt{65}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{65} ಗೆ -1 ಸೇರಿಸಿ.
y=\frac{1-\sqrt{65}}{2}
-2 ದಿಂದ -1+\sqrt{65} ಭಾಗಿಸಿ.
y=\frac{-\sqrt{65}-1}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{-1±\sqrt{65}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -1 ದಿಂದ \sqrt{65} ಕಳೆಯಿರಿ.
y=\frac{\sqrt{65}+1}{2}
-2 ದಿಂದ -1-\sqrt{65} ಭಾಗಿಸಿ.
y=\frac{1-\sqrt{65}}{2} y=\frac{\sqrt{65}+1}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
y=y^{2}-16
\left(y-4\right)\left(y+4\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ವರ್ಗ 4.
y-y^{2}=-16
ಎರಡೂ ಕಡೆಗಳಿಂದ y^{2} ಕಳೆಯಿರಿ.
-y^{2}+y=-16
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-y^{2}+y}{-1}=-\frac{16}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y^{2}+\frac{1}{-1}y=-\frac{16}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
y^{2}-y=-\frac{16}{-1}
-1 ದಿಂದ 1 ಭಾಗಿಸಿ.
y^{2}-y=16
-1 ದಿಂದ -16 ಭಾಗಿಸಿ.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=16+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -1 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
y^{2}-y+\frac{1}{4}=16+\frac{1}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{2} ವರ್ಗಗೊಳಿಸಿ.
y^{2}-y+\frac{1}{4}=\frac{65}{4}
\frac{1}{4} ಗೆ 16 ಸೇರಿಸಿ.
\left(y-\frac{1}{2}\right)^{2}=\frac{65}{4}
ಅಪವರ್ತನ y^{2}-y+\frac{1}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{65}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y-\frac{1}{2}=\frac{\sqrt{65}}{2} y-\frac{1}{2}=-\frac{\sqrt{65}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
y=\frac{\sqrt{65}+1}{2} y=\frac{1-\sqrt{65}}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{2} ಸೇರಿಸಿ.