ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x=2x^{2}-2x
x-1 ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x-2x^{2}=-2x
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
x-2x^{2}+2x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
3x-2x^{2}=0
3x ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು 2x ಕೂಡಿಸಿ.
x\left(3-2x\right)=0
x ಅಪವರ್ತನಗೊಳಿಸಿ.
x=0 x=\frac{3}{2}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x=0 ಮತ್ತು 3-2x=0 ಪರಿಹರಿಸಿ.
x=2x^{2}-2x
x-1 ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x-2x^{2}=-2x
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
x-2x^{2}+2x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
3x-2x^{2}=0
3x ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು 2x ಕೂಡಿಸಿ.
-2x^{2}+3x=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-2\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -2, b ಗೆ 3 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-3±3}{2\left(-2\right)}
3^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-3±3}{-4}
-2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0}{-4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±3}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ಗೆ -3 ಸೇರಿಸಿ.
x=0
-4 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=-\frac{6}{-4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±3}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ 3 ಕಳೆಯಿರಿ.
x=\frac{3}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-6}{-4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=0 x=\frac{3}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x=2x^{2}-2x
x-1 ದಿಂದ 2x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x-2x^{2}=-2x
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x^{2} ಕಳೆಯಿರಿ.
x-2x^{2}+2x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 2x ಸೇರಿಸಿ.
3x-2x^{2}=0
3x ಪಡೆದುಕೊಳ್ಳಲು x ಮತ್ತು 2x ಕೂಡಿಸಿ.
-2x^{2}+3x=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-2x^{2}+3x}{-2}=\frac{0}{-2}
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{3}{-2}x=\frac{0}{-2}
-2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{3}{2}x=\frac{0}{-2}
-2 ದಿಂದ 3 ಭಾಗಿಸಿ.
x^{2}-\frac{3}{2}x=0
-2 ದಿಂದ 0 ಭಾಗಿಸಿ.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\left(-\frac{3}{4}\right)^{2}
-\frac{3}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{3}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{4} ವರ್ಗಗೊಳಿಸಿ.
\left(x-\frac{3}{4}\right)^{2}=\frac{9}{16}
ಅಪವರ್ತನ x^{2}-\frac{3}{2}x+\frac{9}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{4}=\frac{3}{4} x-\frac{3}{4}=-\frac{3}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{3}{2} x=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{4} ಸೇರಿಸಿ.