ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(x-1\right)x+\left(x-1\right)\left(-1\right)=3x\left(x-1\right)+1
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 1 ಗೆ ಸಮನಾಗಿರಬಾರದು. x-1 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x^{2}-x+\left(x-1\right)\left(-1\right)=3x\left(x-1\right)+1
x ದಿಂದ x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-x-x+1=3x\left(x-1\right)+1
-1 ದಿಂದ x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-2x+1=3x\left(x-1\right)+1
-2x ಪಡೆದುಕೊಳ್ಳಲು -x ಮತ್ತು -x ಕೂಡಿಸಿ.
x^{2}-2x+1=3x^{2}-3x+1
x-1 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-2x+1-3x^{2}=-3x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
-2x^{2}-2x+1=-3x+1
-2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
-2x^{2}-2x+1+3x=1
ಎರಡೂ ಬದಿಗಳಿಗೆ 3x ಸೇರಿಸಿ.
-2x^{2}+x+1=1
x ಪಡೆದುಕೊಳ್ಳಲು -2x ಮತ್ತು 3x ಕೂಡಿಸಿ.
-2x^{2}+x+1-1=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
-2x^{2}+x=0
0 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-2\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -2, b ಗೆ 1 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-1±1}{2\left(-2\right)}
1^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-1±1}{-4}
-2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0}{-4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1±1}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ಗೆ -1 ಸೇರಿಸಿ.
x=0
-4 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=-\frac{2}{-4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1±1}{-4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -1 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x=\frac{1}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-2}{-4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=0 x=\frac{1}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\left(x-1\right)x+\left(x-1\right)\left(-1\right)=3x\left(x-1\right)+1
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 1 ಗೆ ಸಮನಾಗಿರಬಾರದು. x-1 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
x^{2}-x+\left(x-1\right)\left(-1\right)=3x\left(x-1\right)+1
x ದಿಂದ x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-x-x+1=3x\left(x-1\right)+1
-1 ದಿಂದ x-1 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-2x+1=3x\left(x-1\right)+1
-2x ಪಡೆದುಕೊಳ್ಳಲು -x ಮತ್ತು -x ಕೂಡಿಸಿ.
x^{2}-2x+1=3x^{2}-3x+1
x-1 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-2x+1-3x^{2}=-3x+1
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
-2x^{2}-2x+1=-3x+1
-2x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
-2x^{2}-2x+1+3x=1
ಎರಡೂ ಬದಿಗಳಿಗೆ 3x ಸೇರಿಸಿ.
-2x^{2}+x+1=1
x ಪಡೆದುಕೊಳ್ಳಲು -2x ಮತ್ತು 3x ಕೂಡಿಸಿ.
-2x^{2}+x=1-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
-2x^{2}+x=0
0 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 1 ಕಳೆಯಿರಿ.
\frac{-2x^{2}+x}{-2}=\frac{0}{-2}
-2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{1}{-2}x=\frac{0}{-2}
-2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{1}{2}x=\frac{0}{-2}
-2 ದಿಂದ 1 ಭಾಗಿಸಿ.
x^{2}-\frac{1}{2}x=0
-2 ದಿಂದ 0 ಭಾಗಿಸಿ.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{1}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{4} ವರ್ಗಗೊಳಿಸಿ.
\left(x-\frac{1}{4}\right)^{2}=\frac{1}{16}
ಅಪವರ್ತನ x^{2}-\frac{1}{2}x+\frac{1}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1}{4}=\frac{1}{4} x-\frac{1}{4}=-\frac{1}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{1}{2} x=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{4} ಸೇರಿಸಿ.