ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-\sqrt{2x}=4-x
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
\left(-\sqrt{2x}\right)^{2}=\left(4-x\right)^{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ವರ್ಗಗೊಳಿಸಿ.
\left(-1\right)^{2}\left(\sqrt{2x}\right)^{2}=\left(4-x\right)^{2}
\left(-\sqrt{2x}\right)^{2} ವಿಸ್ತರಿಸಿ.
1\left(\sqrt{2x}\right)^{2}=\left(4-x\right)^{2}
2 ನ ಘಾತಕ್ಕೆ -1 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 1 ಪಡೆಯಿರಿ.
1\times 2x=\left(4-x\right)^{2}
2 ನ ಘಾತಕ್ಕೆ \sqrt{2x} ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 2x ಪಡೆಯಿರಿ.
2x=\left(4-x\right)^{2}
2 ಪಡೆದುಕೊಳ್ಳಲು 1 ಮತ್ತು 2 ಗುಣಿಸಿ.
2x=16-8x+x^{2}
\left(4-x\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
2x-16=-8x+x^{2}
ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ.
2x-16+8x=x^{2}
ಎರಡೂ ಬದಿಗಳಿಗೆ 8x ಸೇರಿಸಿ.
10x-16=x^{2}
10x ಪಡೆದುಕೊಳ್ಳಲು 2x ಮತ್ತು 8x ಕೂಡಿಸಿ.
10x-16-x^{2}=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-x^{2}+10x-16=0
ಬಹುಪದೋಕ್ತಿಯನ್ನು ಪ್ರಮಾಣಿತ ರೂಪದಲ್ಲಿ ಇರಿಸುವ ಮೂಲಕ ಅದನ್ನು ಮರುಆಯೋಜಿಸಿ. ನಿಯಮಗಳನ್ನು ಅಧಿಕದಿಂದ ಕಡಿಮೆ ಘಾತದ ಕ್ರಮದಲ್ಲಿ ಇರಿಸಿ.
a+b=10 ab=-\left(-16\right)=16
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು -x^{2}+ax+bx-16 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,16 2,8 4,4
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 16 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+16=17 2+8=10 4+4=8
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=8 b=2
ಪರಿಹಾರವು 10 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(-x^{2}+8x\right)+\left(2x-16\right)
\left(-x^{2}+8x\right)+\left(2x-16\right) ನ ಹಾಗೆ -x^{2}+10x-16 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
-x\left(x-8\right)+2\left(x-8\right)
ಮೊದಲನೆಯದರಲ್ಲಿ -x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-8\right)\left(-x+2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-8 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=8 x=2
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-8=0 ಮತ್ತು -x+2=0 ಪರಿಹರಿಸಿ.
8-\sqrt{2\times 8}=4
x-\sqrt{2x}=4 ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ 8 ಬದಲಿಸಿ.
4=4
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=8 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುತ್ತದೆ.
2-\sqrt{2\times 2}=4
x-\sqrt{2x}=4 ಸಮೀಕರಣದಲ್ಲಿ x ಗಾಗಿ 2 ಬದಲಿಸಿ.
0=4
ಸರಳೀಕೃತಗೊಳಿಸಿ. ಮೌಲ್ಯ x=2 ಸಮೀಕರಣವನ್ನು ತೃಪ್ತಿಪಡಿಸುವುದಿಲ್ಲ.
x=8
ಸಮೀಕರಣ -\sqrt{2x}=4-x ಅನನ್ಯ ಪರಿಹಾರವನ್ನು ಹೊಂದಿದೆ.