ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-5x-4=0
ಅಸಮಾನತೆಯನ್ನು ಪರಿಹರಿಸಲು, ಎಡ ಬದಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\left(-4\right)}}{2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 1 ಅನ್ನು,b ಗೆ -5 ಅನ್ನು ಮತ್ತು c ಗೆ -4 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{5±\sqrt{41}}{2}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=\frac{\sqrt{41}+5}{2} x=\frac{5-\sqrt{41}}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{5±\sqrt{41}}{2} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
\left(x-\frac{\sqrt{41}+5}{2}\right)\left(x-\frac{5-\sqrt{41}}{2}\right)<0
ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಸಮಾನವಾಗಿರುವುದನ್ನು ಮರುಬರೆಯಿರಿ.
x-\frac{\sqrt{41}+5}{2}>0 x-\frac{5-\sqrt{41}}{2}<0
ಗುಣಲಬ್ಧವು ಋಣಾತ್ಮಕವಾಗಿರಲು x-\frac{\sqrt{41}+5}{2} ಮತ್ತು x-\frac{5-\sqrt{41}}{2} ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳಲ್ಲಿರಬೇಕು. x-\frac{\sqrt{41}+5}{2} ಧನಾತ್ಮಕವಾಗಿರುವ ಮತ್ತು x-\frac{5-\sqrt{41}}{2} ಋಣಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x\in \emptyset
ಇದು ಯಾವುದೇ x ಗೆ ತಪ್ಪಾಗಿರುತ್ತದೆ.
x-\frac{5-\sqrt{41}}{2}>0 x-\frac{\sqrt{41}+5}{2}<0
x-\frac{5-\sqrt{41}}{2} ಧನಾತ್ಮಕವಾಗಿರುವ ಮತ್ತು x-\frac{\sqrt{41}+5}{2} ಋಣಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x\in \left(\frac{5-\sqrt{41}}{2},\frac{\sqrt{41}+5}{2}\right)
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x\in \left(\frac{5-\sqrt{41}}{2},\frac{\sqrt{41}+5}{2}\right) ಆಗಿದೆ.
x\in \left(\frac{5-\sqrt{41}}{2},\frac{\sqrt{41}+5}{2}\right)
ಅಂತಿಮ ಪರಿಹಾರವು ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳ ಒಂದುಗೂಡುವಿಕೆಯಾಗಿದೆ.