x ಪರಿಹರಿಸಿ
x\in \left(-\infty,-2\right)\cup \left(5,\infty\right)
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}-3x-10=0
ಅಸಮಾನತೆಯನ್ನು ಪರಿಹರಿಸಲು, ಎಡ ಬದಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-10\right)}}{2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 1 ಅನ್ನು,b ಗೆ -3 ಅನ್ನು ಮತ್ತು c ಗೆ -10 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{3±7}{2}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=5 x=-2
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±7}{2} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
\left(x-5\right)\left(x+2\right)>0
ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಸಮಾನವಾಗಿರುವುದನ್ನು ಮರುಬರೆಯಿರಿ.
x-5<0 x+2<0
ಧನಾತ್ಮಕ, ಎಂದು ಉತ್ಪನ್ನಕ್ಕಾಗಿ x-5 ಮತ್ತು x+2 ಋಣಾತ್ಮಕ ಅಥವಾ ಎರಡೂ ಧನಾತ್ಮಕ ಹೊಂದಿಲ್ಲ. x-5 ಮತ್ತು x+2 ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x<-2
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x<-2 ಆಗಿದೆ.
x+2>0 x-5>0
x-5 ಮತ್ತು x+2 ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x>5
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x>5 ಆಗಿದೆ.
x<-2\text{; }x>5
ಅಂತಿಮ ಪರಿಹಾರವು ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳ ಒಂದುಗೂಡುವಿಕೆಯಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}