ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌
ರಸಪ್ರಶ್ನೆ
Polynomial

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-20x-496=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-496\right)}}{2}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-496\right)}}{2}
ವರ್ಗ -20.
x=\frac{-\left(-20\right)±\sqrt{400+1984}}{2}
-496 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-20\right)±\sqrt{2384}}{2}
1984 ಗೆ 400 ಸೇರಿಸಿ.
x=\frac{-\left(-20\right)±4\sqrt{149}}{2}
2384 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{20±4\sqrt{149}}{2}
-20 ನ ವಿಲೋಮವು 20 ಆಗಿದೆ.
x=\frac{4\sqrt{149}+20}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{20±4\sqrt{149}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4\sqrt{149} ಗೆ 20 ಸೇರಿಸಿ.
x=2\sqrt{149}+10
2 ದಿಂದ 20+4\sqrt{149} ಭಾಗಿಸಿ.
x=\frac{20-4\sqrt{149}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{20±4\sqrt{149}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 20 ದಿಂದ 4\sqrt{149} ಕಳೆಯಿರಿ.
x=10-2\sqrt{149}
2 ದಿಂದ 20-4\sqrt{149} ಭಾಗಿಸಿ.
x^{2}-20x-496=\left(x-\left(2\sqrt{149}+10\right)\right)\left(x-\left(10-2\sqrt{149}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ 10+2\sqrt{149} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ 10-2\sqrt{149} ನ್ನು ಬಳಸಿ.