ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-2x-1=0
ಅಸಮಾನತೆಯನ್ನು ಪರಿಹರಿಸಲು, ಎಡ ಬದಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-1\right)}}{2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 1 ಅನ್ನು,b ಗೆ -2 ಅನ್ನು ಮತ್ತು c ಗೆ -1 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{2±2\sqrt{2}}{2}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=\sqrt{2}+1 x=1-\sqrt{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{2±2\sqrt{2}}{2} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
\left(x-\left(\sqrt{2}+1\right)\right)\left(x-\left(1-\sqrt{2}\right)\right)\leq 0
ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಸಮಾನವಾಗಿರುವುದನ್ನು ಮರುಬರೆಯಿರಿ.
x-\left(\sqrt{2}+1\right)\geq 0 x-\left(1-\sqrt{2}\right)\leq 0
ಗುಣಲಬ್ಧವು ≤0 ಆಗಿರುವುದಕ್ಕಾಗಿ, x-\left(\sqrt{2}+1\right) ಮತ್ತು x-\left(1-\sqrt{2}\right) ಗಳಲ್ಲಿ ಒಂದು ಮೌಲ್ಯವು ≥0 ಆಗಿರಬೇಕು ಹಾಗೂ ಮತ್ತೊಂದು ≤0 ಆಗಿರಬೇಕು. x-\left(\sqrt{2}+1\right)\geq 0 ಮತ್ತು x-\left(1-\sqrt{2}\right)\leq 0 ಧನಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x\in \emptyset
ಇದು ಯಾವುದೇ x ಗೆ ತಪ್ಪಾಗಿರುತ್ತದೆ.
x-\left(1-\sqrt{2}\right)\geq 0 x-\left(\sqrt{2}+1\right)\leq 0
x-\left(\sqrt{2}+1\right)\leq 0 ಮತ್ತು x-\left(1-\sqrt{2}\right)\geq 0 ಧನಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x\in \begin{bmatrix}1-\sqrt{2},\sqrt{2}+1\end{bmatrix}
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x\in \left[1-\sqrt{2},\sqrt{2}+1\right] ಆಗಿದೆ.
x\in \begin{bmatrix}1-\sqrt{2},\sqrt{2}+1\end{bmatrix}
ಅಂತಿಮ ಪರಿಹಾರವು ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳ ಒಂದುಗೂಡುವಿಕೆಯಾಗಿದೆ.