ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-16x+57=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 57}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -16 ಮತ್ತು c ಗೆ 57 ಬದಲಿಸಿ.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 57}}{2}
ವರ್ಗ -16.
x=\frac{-\left(-16\right)±\sqrt{256-228}}{2}
57 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-16\right)±\sqrt{28}}{2}
-228 ಗೆ 256 ಸೇರಿಸಿ.
x=\frac{-\left(-16\right)±2\sqrt{7}}{2}
28 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{16±2\sqrt{7}}{2}
-16 ನ ವಿಲೋಮವು 16 ಆಗಿದೆ.
x=\frac{2\sqrt{7}+16}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{16±2\sqrt{7}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{7} ಗೆ 16 ಸೇರಿಸಿ.
x=\sqrt{7}+8
2 ದಿಂದ 16+2\sqrt{7} ಭಾಗಿಸಿ.
x=\frac{16-2\sqrt{7}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{16±2\sqrt{7}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 16 ದಿಂದ 2\sqrt{7} ಕಳೆಯಿರಿ.
x=8-\sqrt{7}
2 ದಿಂದ 16-2\sqrt{7} ಭಾಗಿಸಿ.
x=\sqrt{7}+8 x=8-\sqrt{7}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-16x+57=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}-16x+57-57=-57
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 57 ಕಳೆಯಿರಿ.
x^{2}-16x=-57
57 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}-16x+\left(-8\right)^{2}=-57+\left(-8\right)^{2}
-8 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -16 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -8 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-16x+64=-57+64
ವರ್ಗ -8.
x^{2}-16x+64=7
64 ಗೆ -57 ಸೇರಿಸಿ.
\left(x-8\right)^{2}=7
ಅಪವರ್ತನ x^{2}-16x+64. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-8\right)^{2}}=\sqrt{7}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-8=\sqrt{7} x-8=-\sqrt{7}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{7}+8 x=8-\sqrt{7}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 8 ಸೇರಿಸಿ.