x ಪರಿಹರಿಸಿ
x=\frac{\sqrt{17}-1}{4}\approx 0.780776406
x=\frac{-\sqrt{17}-1}{4}\approx -1.280776406
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}-\frac{1}{2}x-1=-x
ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}-\frac{1}{2}x-1+x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ x ಸೇರಿಸಿ.
x^{2}+\frac{1}{2}x-1=0
\frac{1}{2}x ಪಡೆದುಕೊಳ್ಳಲು -\frac{1}{2}x ಮತ್ತು x ಕೂಡಿಸಿ.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ \frac{1}{2} ಮತ್ತು c ಗೆ -1 ಬದಲಿಸಿ.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)}}{2}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{2} ವರ್ಗಗೊಳಿಸಿ.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4}}{2}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\frac{1}{2}±\sqrt{\frac{17}{4}}}{2}
4 ಗೆ \frac{1}{4} ಸೇರಿಸಿ.
x=\frac{-\frac{1}{2}±\frac{\sqrt{17}}{2}}{2}
\frac{17}{4} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{\sqrt{17}-1}{2\times 2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{1}{2}±\frac{\sqrt{17}}{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{\sqrt{17}}{2} ಗೆ -\frac{1}{2} ಸೇರಿಸಿ.
x=\frac{\sqrt{17}-1}{4}
2 ದಿಂದ \frac{-1+\sqrt{17}}{2} ಭಾಗಿಸಿ.
x=\frac{-\sqrt{17}-1}{2\times 2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-\frac{1}{2}±\frac{\sqrt{17}}{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -\frac{1}{2} ದಿಂದ \frac{\sqrt{17}}{2} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{17}-1}{4}
2 ದಿಂದ \frac{-1-\sqrt{17}}{2} ಭಾಗಿಸಿ.
x=\frac{\sqrt{17}-1}{4} x=\frac{-\sqrt{17}-1}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-\frac{1}{2}x+x=1
ಎರಡೂ ಬದಿಗಳಿಗೆ x ಸೇರಿಸಿ.
x^{2}+\frac{1}{2}x=1
\frac{1}{2}x ಪಡೆದುಕೊಳ್ಳಲು -\frac{1}{2}x ಮತ್ತು x ಕೂಡಿಸಿ.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=1+\left(\frac{1}{4}\right)^{2}
\frac{1}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{1}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{1}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=1+\frac{1}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{17}{16}
\frac{1}{16} ಗೆ 1 ಸೇರಿಸಿ.
\left(x+\frac{1}{4}\right)^{2}=\frac{17}{16}
ಅಪವರ್ತನ x^{2}+\frac{1}{2}x+\frac{1}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{1}{4}=\frac{\sqrt{17}}{4} x+\frac{1}{4}=-\frac{\sqrt{17}}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{17}-1}{4} x=\frac{-\sqrt{17}-1}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1}{4} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}