ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}-25x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 25x ಕಳೆಯಿರಿ.
x\left(x-25\right)=0
x ಅಪವರ್ತನಗೊಳಿಸಿ.
x=0 x=25
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x=0 ಮತ್ತು x-25=0 ಪರಿಹರಿಸಿ.
x^{2}-25x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 25x ಕಳೆಯಿರಿ.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -25 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-\left(-25\right)±25}{2}
\left(-25\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{25±25}{2}
-25 ನ ವಿಲೋಮವು 25 ಆಗಿದೆ.
x=\frac{50}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{25±25}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 25 ಗೆ 25 ಸೇರಿಸಿ.
x=25
2 ದಿಂದ 50 ಭಾಗಿಸಿ.
x=\frac{0}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{25±25}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 25 ದಿಂದ 25 ಕಳೆಯಿರಿ.
x=0
2 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=25 x=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}-25x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 25x ಕಳೆಯಿರಿ.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=\left(-\frac{25}{2}\right)^{2}
-\frac{25}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -25 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{25}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-25x+\frac{625}{4}=\frac{625}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{25}{2} ವರ್ಗಗೊಳಿಸಿ.
\left(x-\frac{25}{2}\right)^{2}=\frac{625}{4}
ಅಪವರ್ತನ x^{2}-25x+\frac{625}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{25}{2}=\frac{25}{2} x-\frac{25}{2}=-\frac{25}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=25 x=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{25}{2} ಸೇರಿಸಿ.