x ಪರಿಹರಿಸಿ
x=3\sqrt{2}\approx 4.242640687
x=-3\sqrt{2}\approx -4.242640687
ಗ್ರಾಫ್
ರಸಪ್ರಶ್ನೆ
Algebra
5 ಇದೇ ತರಹದ ಪ್ರಶ್ನೆಗಳು:
x ^ { 2 } = ( 2 + \sqrt { 5 } ) ^ { 2 } + ( 2 - \sqrt { 5 } ) ^ { 2 }
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
\left(2+\sqrt{5}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
9 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 5 ಸೇರಿಸಿ.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
\left(2-\sqrt{5}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
9 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 5 ಸೇರಿಸಿ.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
18 ಪಡೆದುಕೊಳ್ಳಲು 9 ಮತ್ತು 9 ಸೇರಿಸಿ.
x^{2}=18
0 ಪಡೆದುಕೊಳ್ಳಲು 4\sqrt{5} ಮತ್ತು -4\sqrt{5} ಕೂಡಿಸಿ.
x=3\sqrt{2} x=-3\sqrt{2}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x^{2}=4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}+\left(2-\sqrt{5}\right)^{2}
\left(2+\sqrt{5}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}=4+4\sqrt{5}+5+\left(2-\sqrt{5}\right)^{2}
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
x^{2}=9+4\sqrt{5}+\left(2-\sqrt{5}\right)^{2}
9 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 5 ಸೇರಿಸಿ.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}
\left(2-\sqrt{5}\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ಬಳಸಿ.
x^{2}=9+4\sqrt{5}+4-4\sqrt{5}+5
\sqrt{5} ವರ್ಗವು 5 ಆಗಿದೆ.
x^{2}=9+4\sqrt{5}+9-4\sqrt{5}
9 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 5 ಸೇರಿಸಿ.
x^{2}=18+4\sqrt{5}-4\sqrt{5}
18 ಪಡೆದುಕೊಳ್ಳಲು 9 ಮತ್ತು 9 ಸೇರಿಸಿ.
x^{2}=18
0 ಪಡೆದುಕೊಳ್ಳಲು 4\sqrt{5} ಮತ್ತು -4\sqrt{5} ಕೂಡಿಸಿ.
x^{2}-18=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 18 ಕಳೆಯಿರಿ.
x=\frac{0±\sqrt{0^{2}-4\left(-18\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 0 ಮತ್ತು c ಗೆ -18 ಬದಲಿಸಿ.
x=\frac{0±\sqrt{-4\left(-18\right)}}{2}
ವರ್ಗ 0.
x=\frac{0±\sqrt{72}}{2}
-18 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±6\sqrt{2}}{2}
72 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=3\sqrt{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±6\sqrt{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=-3\sqrt{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±6\sqrt{2}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=3\sqrt{2} x=-3\sqrt{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}