ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}+x+2=1
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x^{2}+x+2-1=1-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
x^{2}+x+2-1=0
1 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}+x+1=0
2 ದಿಂದ 1 ಕಳೆಯಿರಿ.
x=\frac{-1±\sqrt{1^{2}-4}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 1 ಮತ್ತು c ಗೆ 1 ಬದಲಿಸಿ.
x=\frac{-1±\sqrt{1-4}}{2}
ವರ್ಗ 1.
x=\frac{-1±\sqrt{-3}}{2}
-4 ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{-1±\sqrt{3}i}{2}
-3 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-1+\sqrt{3}i}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1±\sqrt{3}i}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. i\sqrt{3} ಗೆ -1 ಸೇರಿಸಿ.
x=\frac{-\sqrt{3}i-1}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-1±\sqrt{3}i}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -1 ದಿಂದ i\sqrt{3} ಕಳೆಯಿರಿ.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+x+2=1
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}+x+2-2=1-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 2 ಕಳೆಯಿರಿ.
x^{2}+x=1-2
2 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x^{2}+x=-1
1 ದಿಂದ 2 ಕಳೆಯಿರಿ.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 1 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{1}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{1}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
\frac{1}{4} ಗೆ -1 ಸೇರಿಸಿ.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
ಅಪವರ್ತನ x^{2}+x+\frac{1}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{1}{2} ಕಳೆಯಿರಿ.