ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌
ರಸಪ್ರಶ್ನೆ
Quadratic Equation

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}+67-18x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 18x ಕಳೆಯಿರಿ.
x^{2}-18x+67=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 67}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -18 ಮತ್ತು c ಗೆ 67 ಬದಲಿಸಿ.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 67}}{2}
ವರ್ಗ -18.
x=\frac{-\left(-18\right)±\sqrt{324-268}}{2}
67 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-18\right)±\sqrt{56}}{2}
-268 ಗೆ 324 ಸೇರಿಸಿ.
x=\frac{-\left(-18\right)±2\sqrt{14}}{2}
56 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{18±2\sqrt{14}}{2}
-18 ನ ವಿಲೋಮವು 18 ಆಗಿದೆ.
x=\frac{2\sqrt{14}+18}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{18±2\sqrt{14}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{14} ಗೆ 18 ಸೇರಿಸಿ.
x=\sqrt{14}+9
2 ದಿಂದ 18+2\sqrt{14} ಭಾಗಿಸಿ.
x=\frac{18-2\sqrt{14}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{18±2\sqrt{14}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 18 ದಿಂದ 2\sqrt{14} ಕಳೆಯಿರಿ.
x=9-\sqrt{14}
2 ದಿಂದ 18-2\sqrt{14} ಭಾಗಿಸಿ.
x=\sqrt{14}+9 x=9-\sqrt{14}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+67-18x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 18x ಕಳೆಯಿರಿ.
x^{2}-18x=-67
ಎರಡೂ ಕಡೆಗಳಿಂದ 67 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
x^{2}-18x+\left(-9\right)^{2}=-67+\left(-9\right)^{2}
-9 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -18 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -9 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-18x+81=-67+81
ವರ್ಗ -9.
x^{2}-18x+81=14
81 ಗೆ -67 ಸೇರಿಸಿ.
\left(x-9\right)^{2}=14
ಅಪವರ್ತನ x^{2}-18x+81. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-9\right)^{2}}=\sqrt{14}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-9=\sqrt{14} x-9=-\sqrt{14}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{14}+9 x=9-\sqrt{14}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 9 ಸೇರಿಸಿ.