ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x^{2}+3+8x-2x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}+3+6x=-1
6x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -2x ಕೂಡಿಸಿ.
x^{2}+3+6x+1=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
x^{2}+4+6x=0
4 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 1 ಸೇರಿಸಿ.
x^{2}+6x+4=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-6±\sqrt{6^{2}-4\times 4}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 6 ಮತ್ತು c ಗೆ 4 ಬದಲಿಸಿ.
x=\frac{-6±\sqrt{36-4\times 4}}{2}
ವರ್ಗ 6.
x=\frac{-6±\sqrt{36-16}}{2}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{20}}{2}
-16 ಗೆ 36 ಸೇರಿಸಿ.
x=\frac{-6±2\sqrt{5}}{2}
20 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2\sqrt{5}-6}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±2\sqrt{5}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{5} ಗೆ -6 ಸೇರಿಸಿ.
x=\sqrt{5}-3
2 ದಿಂದ -6+2\sqrt{5} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{5}-6}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±2\sqrt{5}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 2\sqrt{5} ಕಳೆಯಿರಿ.
x=-\sqrt{5}-3
2 ದಿಂದ -6-2\sqrt{5} ಭಾಗಿಸಿ.
x=\sqrt{5}-3 x=-\sqrt{5}-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+3+8x-2x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}+3+6x=-1
6x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -2x ಕೂಡಿಸಿ.
x^{2}+6x=-1-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
x^{2}+6x=-4
-4 ಪಡೆದುಕೊಳ್ಳಲು -1 ದಿಂದ 3 ಕಳೆಯಿರಿ.
x^{2}+6x+3^{2}=-4+3^{2}
3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+6x+9=-4+9
ವರ್ಗ 3.
x^{2}+6x+9=5
9 ಗೆ -4 ಸೇರಿಸಿ.
\left(x+3\right)^{2}=5
ಅಪವರ್ತನ x^{2}+6x+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ವರ್ಗವಾದಾಗ, ಇದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+3\right)^{2}}=\sqrt{5}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+3=\sqrt{5} x+3=-\sqrt{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{5}-3 x=-\sqrt{5}-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
x^{2}+3+8x-2x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}+3+6x=-1
6x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -2x ಕೂಡಿಸಿ.
x^{2}+3+6x+1=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 1 ಸೇರಿಸಿ.
x^{2}+4+6x=0
4 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 1 ಸೇರಿಸಿ.
x^{2}+6x+4=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-6±\sqrt{6^{2}-4\times 4}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 6 ಮತ್ತು c ಗೆ 4 ಬದಲಿಸಿ.
x=\frac{-6±\sqrt{36-4\times 4}}{2}
ವರ್ಗ 6.
x=\frac{-6±\sqrt{36-16}}{2}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{20}}{2}
-16 ಗೆ 36 ಸೇರಿಸಿ.
x=\frac{-6±2\sqrt{5}}{2}
20 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{2\sqrt{5}-6}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±2\sqrt{5}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{5} ಗೆ -6 ಸೇರಿಸಿ.
x=\sqrt{5}-3
2 ದಿಂದ -6+2\sqrt{5} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{5}-6}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±2\sqrt{5}}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 2\sqrt{5} ಕಳೆಯಿರಿ.
x=-\sqrt{5}-3
2 ದಿಂದ -6-2\sqrt{5} ಭಾಗಿಸಿ.
x=\sqrt{5}-3 x=-\sqrt{5}-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x^{2}+3+8x-2x=-1
ಎರಡೂ ಕಡೆಗಳಿಂದ 2x ಕಳೆಯಿರಿ.
x^{2}+3+6x=-1
6x ಪಡೆದುಕೊಳ್ಳಲು 8x ಮತ್ತು -2x ಕೂಡಿಸಿ.
x^{2}+6x=-1-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
x^{2}+6x=-4
-4 ಪಡೆದುಕೊಳ್ಳಲು -1 ದಿಂದ 3 ಕಳೆಯಿರಿ.
x^{2}+6x+3^{2}=-4+3^{2}
3 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 6 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 3 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+6x+9=-4+9
ವರ್ಗ 3.
x^{2}+6x+9=5
9 ಗೆ -4 ಸೇರಿಸಿ.
\left(x+3\right)^{2}=5
ಅಪವರ್ತನ x^{2}+6x+9. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ವರ್ಗವಾದಾಗ, ಇದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+3\right)^{2}}=\sqrt{5}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+3=\sqrt{5} x+3=-\sqrt{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{5}-3 x=-\sqrt{5}-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.