x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\frac{-5+\sqrt{47}i}{6}\approx -0.833333333+1.1426091i
x=\frac{-\sqrt{47}i-5}{6}\approx -0.833333333-1.1426091i
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
3x^{2}+5x+6=0
3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು 2x^{2} ಕೂಡಿಸಿ.
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 6}}{2\times 3}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 3, b ಗೆ 5 ಮತ್ತು c ಗೆ 6 ಬದಲಿಸಿ.
x=\frac{-5±\sqrt{25-4\times 3\times 6}}{2\times 3}
ವರ್ಗ 5.
x=\frac{-5±\sqrt{25-12\times 6}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5±\sqrt{25-72}}{2\times 3}
6 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5±\sqrt{-47}}{2\times 3}
-72 ಗೆ 25 ಸೇರಿಸಿ.
x=\frac{-5±\sqrt{47}i}{2\times 3}
-47 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-5±\sqrt{47}i}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5+\sqrt{47}i}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-5±\sqrt{47}i}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. i\sqrt{47} ಗೆ -5 ಸೇರಿಸಿ.
x=\frac{-\sqrt{47}i-5}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-5±\sqrt{47}i}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -5 ದಿಂದ i\sqrt{47} ಕಳೆಯಿರಿ.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3x^{2}+5x+6=0
3x^{2} ಪಡೆದುಕೊಳ್ಳಲು x^{2} ಮತ್ತು 2x^{2} ಕೂಡಿಸಿ.
3x^{2}+5x=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 6 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
\frac{3x^{2}+5x}{3}=-\frac{6}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{5}{3}x=-\frac{6}{3}
3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{5}{3}x=-2
3 ದಿಂದ -6 ಭಾಗಿಸಿ.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=-2+\left(\frac{5}{6}\right)^{2}
\frac{5}{6} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{5}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{5}{6} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-2+\frac{25}{36}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{5}{6} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-\frac{47}{36}
\frac{25}{36} ಗೆ -2 ಸೇರಿಸಿ.
\left(x+\frac{5}{6}\right)^{2}=-\frac{47}{36}
ಅಪವರ್ತನ x^{2}+\frac{5}{3}x+\frac{25}{36}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{-\frac{47}{36}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{5}{6}=\frac{\sqrt{47}i}{6} x+\frac{5}{6}=-\frac{\sqrt{47}i}{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{-5+\sqrt{47}i}{6} x=\frac{-\sqrt{47}i-5}{6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{6} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}